1.Period circadian clock 3 inhibits palmitic acid-induced oxidative stress and inflammatory factor secretion in podocytes.
Lin PENG ; Keke ZHANG ; Ke CHEN
Journal of Central South University(Medical Sciences) 2021;46(11):1177-1186
OBJECTIVES:
High fat-induced podocyte injury is one of the important factors leading to obesity related nephropathy (ORG), but the mechanism is not clear. This study aims to explore the mechanism of period circadian clock 3 (PER3) in the oxidative stress and inflammation induced by palmitic acid (PA) in podocytes.
METHODS:
The C57BL/6J mice were fed with chow and high-fat diet for 16 weeks. The PER3 expression in kidney tissues were detected in the normal body weight group and the obesity group. The PER3 mRNA and protein expression were detected after the podocytes were induced with different concentrations (0, 50, 150 and 300 μmol/L) of PA for 48 h. The PER3 mRNA and protein expression were detected after the podocytes were induced with 150 μmol/L PA for 0, 24, 36, and 48 h. Triglyceride (TG) levels were examined in the PA group, the adenovirus (ad)-PER3+PA group, and the siRNA-PER+PA group after the podocytes were transfected by Ad-PER3 or small interfering RNA (siRNA)-PER3 for 48 h and subsequently were induced with 150 μmol/L PA for 48 h. The differential gene expression was detected using RNA sequencing (RNA-seq) after podocytes were transfected by siRNA-PER3 (siRNA-PER3 group) and siRNA-control (siRNA-control group), respectively. The mRNA levels of nephrin, podocin, podocalyxin, podoplanin, superoxide dismutase 1 (SOD1), glutathione peroxidase 1 (GPX1), catalase (CAT), and the levels of malondialdehyde (MDA), glutathione (GSH), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), interleukin-1β (IL-1β) and interleukin-2 (IL-2) were detected after podocytes were transfected with Ad-PER3 or Ad-control for 48 h and then they were induced by 150 μmol/L PA for 48 h.
RESULTS:
The PER3 was down-regulated in the obesity group compared with the normal body weight group (
CONCLUSIONS
PER3 can decrease the PA-induced oxidative stress and inflammatory factor secretion via inhibiting the lipogenesis in podocytes.
Animals
;
Circadian Clocks
;
Mice
;
Mice, Inbred C57BL
;
Oxidative Stress
;
Palmitic Acid/toxicity*
;
Podocytes/metabolism*
2.SCD1 over-expression inhibits palmitic acid-induced apoptosis of rat BRL hepatocytes.
Defeng CAI ; Jiangao FAN ; Dongli MA ; Yueping WU ; Yuanshan LU
Chinese Journal of Hepatology 2014;22(1):48-52
OBJECTIVETo investigate the protective mechanism of stearoyl-CoA desaturase 1 (SCD1) over-expression against the pro-apoptotic affects of palmitic acid on hepatocytes using the rat BRL cell line.
METHODSConcentration effect curves were generated using the trypan blue exclusion test to assess the death rate of BRL cells upon exposure to a dilution series of palmitic acid. The multiplicity of infection (MOI) of a lentiviral expression vector, pGC-FU-GFP, was determined for the BRL cells. Unmanipulated BRL cells were divided into two groups: the non-palmitate groups were composed of ordinary cultured cells (CON) alone, infected with lentivirus empty expression vector (negative control, NC), and infected with lentivirus overexpressing SCD1 (SCD1-LV); the palmitate groups were composed of ordinary cultured cells plus palmitate (CON+) alone, infected with lentivirus empty expression vector plus palmitate (NC+), and infected with lentivirus overexpressing SCD1 plus palmitate (SCD1-LV+). SCD1 mRNA expression was detected by real-time PCR. Propidium iodide (PI) single-staining was used to detect apoptosis and assess the cell cycle. Inter-group differences were analyzed statistically.
RESULTSThe death rate of BRL cells increased significantly after 72 h of exposure to 400 mumol/L palmitate (P less than 0.01). The MOI of pGC-FU-GFP in BRL cells was 20. The expression of SCD1 was significantly higher in the SCD1-LV and SCD1-LV+ groups than in the respective controls (vs. CON: F = 289, P less than 0.01; vs. CON+: F = 1522, P less than 0.01). Palmitate exposure led to decreased expression of SCD1 (CON+ vs. CON, F = 22, P less than 0.05 and NC+ vs. NC: F = 34, P less than 0.05). The ratio of S stage cells was similar in all non-palmitate groups (CON, NC and SCD1-LV, P = 0.137). However, there was a significant apoptotic peak and lower ratio of S stage cells in the control palmitate groups (CON+ and NC+) and the activity of cell proliferation was decreased as well. The ratio of apoptotic cells was decreased significantly in the SCD1-LV+ group compared to the CON+ group (P less than 0.01).
CONCLUSIONThe expression of SCD1 and its desaturation activity increased in BRL cells upon infection with the pGC-FU-SCD1-GFP lentiviral vector, suggesting that SCD1 over-expression can decrease palmitic acid-induced toxicity and apoptosis in hepatocytes.
Animals ; Apoptosis ; Cell Line ; Genetic Vectors ; Hepatocytes ; metabolism ; Lentivirus ; genetics ; Palmitic Acid ; toxicity ; Rats ; Stearoyl-CoA Desaturase ; metabolism
3.Guanxin Zhitong Capsules attenuate human endothelial cell damage induced by palmitic acid via MAPK signaling pathway.
Xiao-Li WANG ; Jing SHAO ; Guan-Xin WU ; Wei ZHANG ; Hong-Yan ZHOU ; Kai-Yan LI ; Wei SUN
China Journal of Chinese Materia Medica 2021;46(19):5096-5102
The present study observed the effect of Guanxin Zhitong Capsules(GXZT) on the lipotoxicity of vascular endothelial cells and investigated the mechanism of GXZT in atherosclerosis treatment. The lipotoxicity model in human umbilical vein endothelial cells(HUVECs) was induced by palmitic acid(PA) stimulation. These cells were divided into a normal control group(NC, 15% normal serum), a model group(PA, 0.6 mmol·L~(-1) PA+15% normal serum), a high-dose GXZT group(GXZT-H, 0.6 mmol·L~(-1) PA+15% GXZT-medicated serum), a medium-dose GXZT group(GXZT-M, 0.6 mmol·L~(-1) PA+10% GXZT-medicated serum+5% normal serum) and a low-dose GXZT group(GXZT-L, 0.6 mmol·L~(-1) PA+5% GXZT-medicated serum+10% normal serum). HUVECs were detected for cell viability by cell counting kit-8(CCK-8) assay, apoptosis by flow cytometry, mitochondrial membrane potential(MMP) by JC-1 labeled laser scanning confocal microscopy, and total and phosphorylated proteins of p38, ERK1/2, and JNK1/2 in the mitogen-activated protein kinases(MAPK) signaling pathway by Western blot. The phosphorylated level was calcula-ted. Compared with the NC group, the PA group showed decreased cell viability and MMP(P<0.01, P<0.01), elevated apoptosis(P<0.01), and up-regulated phosphorylated levels of p38, ERK1/2, and JNK1/2(P<0.01, P<0.01, P<0.01). Compared with the PA group, the GXZT-H, GXZT-M, and GXZT-L groups showed increased cell viability and MMP(P<0.01, P<0.01, P<0.01), reduced apoptosis(P<0.01), and down-regulated protein expression and phosphorylated levels of p38, ERK1/2 and JNK1/2 in the MAPK signaling pathway(P<0.01, P<0.01, P<0.01). In conclusion, the results suggest that GXZT functions via blocking MAPK signaling pathway to relieve the damage of HUVECs induced by PA.
Apoptosis
;
Capsules
;
Human Umbilical Vein Endothelial Cells/metabolism*
;
Humans
;
MAP Kinase Signaling System
;
Palmitic Acid/toxicity*
;
Signal Transduction
;
p38 Mitogen-Activated Protein Kinases/metabolism*
4.MicroRNA-34a contributes to the protective effects of glucagon-like peptide-1 against lipotoxicity in INS-1 cells.
Yu-Bing HAN ; Min-Nan WANG ; Qiang LI ; Lin GUO ; Yu-Mei YANG ; Peng-Jie LI ; Wei WANG ; Jin-Chao ZHANG
Chinese Medical Journal 2012;125(23):4202-4208
BACKGROUNDGlucagon-like peptide-1 (GLP-1) reduces fatty acid-induced beta-cell lipotoxicity in diabetes; however, the explicit mechanisms underlying this process are not fully understood. This study was designed to investigate the involvement of microRNA, which regulates gene expression by the sequence-specific inhibition of mRNA transcription in the GLP-1 mediation of beta-cell function.
METHODSThe cell viability and apoptosis were determined using an methyl thiazoleterazolium (MTT) assay and flow cytometry. The expression of genes involved in beta-cell function, including microRNA-34a and sirtuin 1, were investigated using real-time PCR. The underlying mechanisms of microRNA-34a were further explored using cell-transfection assays.
RESULTSA 24-hours incubation of INS-1 cells with palmitate significantly decreased cell viability, increased cell apoptosis and led to the activation of microRNA-34a and the suppression of sirtuin 1. A co-incubation with GLP-1 protected the cells against palmitate-induced toxicity in association with a reduction in palmitate-induced activation of microRNA-34a. Furthermore, palmitate-induced apoptosis was significantly increased in cells that were infected with microRNA-34a mimics and decreased in cells that were infected with microRNA-34a inhibitors.
CONCLUSIONMicroRNA-34a is involved in the mechanism of GLP-1 on the modulation of beta-cell growth and survival.
Animals ; Apoptosis ; drug effects ; Cell Line ; Cell Survival ; drug effects ; Fatty Acids, Nonesterified ; toxicity ; Glucagon-Like Peptide 1 ; pharmacology ; Insulin-Secreting Cells ; cytology ; drug effects ; metabolism ; MicroRNAs ; genetics ; metabolism ; Palmitic Acid ; pharmacology ; Rats ; Real-Time Polymerase Chain Reaction
5.The Glucotoxicity Protecting Effect of Ezetimibe in Pancreatic Beta Cells via Inhibition of CD36.
Ji Sung YOON ; Jun Sung MOON ; Yong Woon KIM ; Kyu Chang WON ; Hyoung Woo LEE
Journal of Korean Medical Science 2016;31(4):547-552
Inhibition of CD36, a fatty acid transporter, has been reported to prevent glucotoxicity and ameliorate high glucose induced beta cell dysfunction. Ezetimibe is a selective cholesterol absorption inhibitor that blocks Niemann Pick C1-like 1 protein, but may exert its effect through suppression of CD36. We attempted to clarify the beneficial effect of ezetimibe on insulin secreting cells and to determine whether this effect is related to change of CD36 expression. mRNA expression of insulin and CD36, intracellular peroxide level and glucose stimulated insulin secretion (GSIS) under normal (5.6 mM) or high glucose (30 mM) condition in INS-1 cells and primary rat islet cells were compared. Changes of the aforementioned factors with treatment with ezetimibe (20 μM) under normal or high glucose condition were also assessed. mRNA expression of insulin was decreased with high glucose, which was reversed by ezetimibe in both INS-1 cells and primary rat islets. CD36 mRNA expression was increased with high glucose, but decreased by ezetimibe in INS-1 cells and primary rat islets. Three-day treatment with high glucose resulted in an increase in intracellular peroxide level; however, it was decreased by treatment with ezetimibe. Decrease in GSIS by three-day treatment with high glucose was reversed by ezetimibe. Palmitate uptake following exposure to high glucose conditions for three days was significantly elevated, which was reversed by ezetimibe in INS-1 cells. Ezetimibe may prevent glucotoxicity in pancreatic β-cells through a decrease in fatty acid influx via inhibition of CD36.
Animals
;
Anticholesteremic Agents/*pharmacology
;
Antigens, CD36/antagonists & inhibitors/genetics/*metabolism
;
Cells, Cultured
;
Ezetimibe/*pharmacology
;
Flow Cytometry
;
Glucose/toxicity
;
Insulin/genetics/metabolism/secretion
;
Insulin-Secreting Cells/cytology/*drug effects/metabolism
;
Male
;
Palmitic Acid/metabolism
;
RNA, Messenger/metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Reactive Oxygen Species/metabolism
;
Real-Time Polymerase Chain Reaction
6.Effects of berberine and cinnamic acid on palmitic acid-induced intracellular triglyceride accumulation in NIT-1 pancreatic β cells.
Li ZHAO ; Shu-Jun JIANG ; Fu-Er LU ; Li-Jun XU ; Xin ZOU ; Kai-Fu WANG ; Hui DONG
Chinese journal of integrative medicine 2016;22(7):496-502
OBJECTIVETo investigate the effects of berberine (BBR) and cinnamic acid (CA), the main active components in Jiaotai Pill (, JTP), on palmitic acid (PA)-induced intracellular triglyceride (TG) accumulation in NIT-1 pancreatic β cells.
METHODSCells were incubated in culture medium containing PA (0.25 mmol/L) for 24 h. Then treatments with BBR (10 μmol/L), CA (100 μmol/L) and the combination of BBR and CA (BBR+CA) were performed respectively. Intracellular lipid accumulation was assessed by Oil Red O staining and TG content was measured by colorimetric assay. The expression of adenosine monophosphate-activated protein kinase (AMPK) protein and its downstream lipogenic and fatty acid oxidation genes, including fatty acid synthase (FAS), acetyl-coA carboxylase (ACC), phosphorylation acetyl-coA carboxylase (pACC), carnitine acyl transferase 1 (CPT-1) and sterol regulating element binding protein 1c (SREBP-1c) were determined by Western blot or real time polymerase chain reaction.
RESULTSPA induced an obvious lipid accumulation and a significant increase in intracellular TG content in NIT-1 cells. PA also induced a remarkable decrease in AMPK protein expression and its downstream targets such as pACC and CPT-1. Meanwhile, AMPK downstream lipogenic genes including SREBP-1c mRNA, FAS and ACC protein expressions were increased. Treatments with BBR and BBR+CA, superior to CA, significantly reversed the above genes changes in NIT-1 pancreatic β cells. However, the synergistic effect of BBR and CA on intracellular TG content was not observed in the present study.
CONCLUSIONIt can be concluded that in vitro, BBR and BBR+CA could inhibit PA-induced lipid accumulation by decreasing lipogenesis and increasing lipid oxidation in NIT-1 pancreatic β cells.
AMP-Activated Protein Kinases ; metabolism ; Animals ; Berberine ; chemistry ; pharmacology ; Cell Line ; Cinnamates ; chemistry ; pharmacology ; Fatty Acids ; metabolism ; Gene Expression Regulation ; drug effects ; Insulin-Secreting Cells ; drug effects ; metabolism ; Intracellular Space ; metabolism ; Lipogenesis ; drug effects ; genetics ; Mice ; Oxidation-Reduction ; drug effects ; Palmitic Acid ; toxicity ; Triglycerides ; metabolism
7.Role and mechanism of uncoupling protein 2 on the fatty acid-induced dysfunction of pancreatic alpha cells in vitro.
Jie-ying SU ; Hong-liang LI ; Wen-ying YANG ; Jian-zhong XIAO ; Rui-qin DU ; Xiao-xia SHEN ; Zhe CAI ; Lan ZHANG ; Jun SHU
Chinese Medical Journal 2010;123(17):2416-2423
BACKGROUNDUncoupling protein (UCP) 2 is related to the dysfunction of beta cells induced by fatty acids. However, whether UCP2 has similar effects on alpha cell is still not clear. This study aimed to investigate the effects of UCP2 and its possible mechanisms in lipotoxicity-induced dysfunction of pancreatic alpha cells.
METHODSThe alpha TC1-6 cells were used in this study to evaluate the effects of palmitate and/or UCP2 inhibit factors on the glucagon secretory function, glucagon content, the glucagon mRNA level and the nitrotyrosine level in the supernatant. Meantime, the expression levels of UCP2 and peroxisome proliferator-activated receptor-γ coactivator-1 alpha (PGC-1 alpha) were measured by real-time reverse transcription polymerase chain reaction (RT-PCR) and Western blotting. Furthermore, the possible relationship between UCP2 and insulin signal transduction pathway was analyzed.
RESULTSPalmitate stimulated alpha cell glucagon secretion and the expression of UCP2 and PGC-1 alpha, which could be partially decreased by the inhibition of UCP2. Palmitate increased nitrotyrosine level and suppressed insulin signal transduction pathway in alpha cells. Inhibition of UCP2 influenced the effects of free fatty acid on alpha cells and may relate to glucagon secretion.
CONCLUSIONUCP2 played an important role on alpha cell dysfunction induced by free fatty acid in vitro, which may be related to its effects on oxidative stress and insulin signal transduction pathway.
Animals ; Cells, Cultured ; Glucagon ; secretion ; Glucagon-Secreting Cells ; drug effects ; physiology ; Insulin ; pharmacology ; Insulin Receptor Substrate Proteins ; metabolism ; Ion Channels ; genetics ; physiology ; Iridoid Glycosides ; pharmacology ; Iridoids ; Mice ; Mitochondrial Proteins ; genetics ; physiology ; Oxidative Stress ; Palmitic Acid ; toxicity ; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha ; Phosphorylation ; RNA, Messenger ; analysis ; Signal Transduction ; Trans-Activators ; genetics ; physiology ; Transcription Factors ; Tyrosine ; analogs & derivatives ; metabolism ; Uncoupling Protein 2
8.Ethanol promotes saturated fatty acid-induced hepatoxicity through endoplasmic reticulum (ER) stress response.
Hong-Wei YI ; Yu-Xiang MA ; Xiao-Ning WANG ; Cui-Fen WANG ; Jian LU ; Wei CAO ; Xu-Dong WU
Chinese Journal of Natural Medicines (English Ed.) 2015;13(4):250-256
Serum palmitic acid (PA), a type of saturated fatty acid, causes lipid accumulation and induces toxicity in hepatocytes. Ethanol (EtOH) is metabolized by the liver and induces hepatic injury and inflammation. Herein, we analyzed the effects of EtOH on PA-induced lipotoxicity in the liver. Our results indicated that EtOH aggravated PA-induced apoptosis and lipid accumulation in primary rat hepatocytes in dose-dependent manner. EtOH intensified PA-caused endoplasmic reticulum (ER) stress response in vitro and in vivo, and the expressions of CHOP, ATF4, and XBP-1 in nucleus were significantly increased. EtOH also increased PA-caused cleaved caspase-3 in cytoplasm. In wild type and CHOP(-/-) mice treated with EtOH and high fat diet (HFD), EtOH worsened the HFD-induced liver injury and dyslipidemia, while CHOP knockout blocked toxic effects of EtOH and PA. Our study suggested that targeting UPR-signaling pathways is a promising, novel approach to reducing EtOH and saturated fatty acid-induced metabolic complications.
Activating Transcription Factor 4
;
drug effects
;
metabolism
;
Animals
;
Apoptosis
;
drug effects
;
Caspase 3
;
drug effects
;
Chemical and Drug Induced Liver Injury
;
metabolism
;
DNA-Binding Proteins
;
drug effects
;
metabolism
;
Diet, High-Fat
;
adverse effects
;
Dose-Response Relationship, Drug
;
Dyslipidemias
;
chemically induced
;
metabolism
;
Endoplasmic Reticulum Stress
;
drug effects
;
Ethanol
;
metabolism
;
toxicity
;
Fatty Liver
;
chemically induced
;
metabolism
;
Gene Knockout Techniques
;
Hepatocytes
;
drug effects
;
metabolism
;
Lipid Metabolism
;
drug effects
;
Liver
;
metabolism
;
Male
;
Mice
;
Palmitic Acid
;
toxicity
;
Rats
;
Rats, Sprague-Dawley
;
Regulatory Factor X Transcription Factors
;
Signal Transduction
;
drug effects
;
Transcription Factor CHOP
;
drug effects
;
genetics
;
metabolism
;
Transcription Factors
;
drug effects
;
metabolism
;
Unfolded Protein Response
;
drug effects
;
X-Box Binding Protein 1