1.Small nucleolar RNA host gene 1 (SNHG1) facilitates gemcitabine chemosensitivity in gallbladder cancer by regulating the miR-23b-3p/phosphatase and tensin homolog (PTEN) pathway.
Hui WANG ; Yixiang GU ; Miaomiao GUO ; Ming ZHAN ; Min HE ; Yang ZHANG ; Linhua YANG ; Yingbin LIU
Chinese Medical Journal 2025;138(21):2783-2792
BACKGROUND:
Growing evidence suggests that long non-coding RNAs (lncRNAs) exert pivotal roles in fostering chemoresistance across diverse tumors. Nevertheless, the precise involvement of lncRNAs in modulating chemoresistance within the context of gallbladder cancer (GBC) remains obscure. This study aimed to uncover how lncRNAs regulate chemoresistance in gallbladder cancer, offering potential targets to overcome drug resistance.
METHODS:
To elucidate the relationship between gemcitabine sensitivity and small nucleolar RNA host gene 1 ( SNHG1 ) expression, we utilized publicly available GBC databases, GBC tissues from Renji Hospital collected between January 2017 and December 2019, as well as GBC cell lines. The assessment of SNHG1, miR-23b-3p, and phosphatase and tensin homolog (PTEN) expression was performed using in situ hybridization, quantitative real-time polymerase chain reaction, and western blotting. The cell counting kit-8 (CCK-8) assay was used to quantify the cell viability. Furthermore, a GBC xenograft model was employed to evaluate the impact of SNHG1 on the therapeutic efficacy of gemcitabine. Receiver operating characteristic (ROC) curve analyses were executed to assess the specificity and sensitivity of SNHG1.
RESULTS:
Our analyses revealed an inverse correlation between the lncRNA SNHG1 and gemcitabine resistance across genomics of drug sensitivity in cancer (GDSC) and Gene Expression Omnibus (GEO) datasets, GBC cell lines, and patients. Gain-of-function investigations underscored that SNHG1 heightened the gemcitabine sensitivity of GBC cells in both in vitro and in vivo settings. Mechanistic explorations illuminated that SNHG1 could activate PTEN -a commonly suppressed tumor suppressor gene in cancers-thereby curbing the development of gemcitabine resistance in GBC cells. Notably, microRNA (miRNA) target prediction algorithms unveiled the presence of miR-23b-3p binding sites within SNHG1 and the 3'-untranslated region (UTR) of PTEN . Moreover, SNHG1 acted as a sponge for miR-23b-3p, competitively binding to the 3'-UTR of PTEN , thereby amplifying PTEN expression and heightening the susceptibility of GBC cells to gemcitabine.
CONCLUSION
The SNHG1/miR-23b-3p/PTEN axis emerges as a pivotal regulator of gemcitabine sensitivity in GBC cells, holding potential as a promising therapeutic target for managing GBC patients.
Humans
;
Deoxycytidine/pharmacology*
;
PTEN Phosphohydrolase/genetics*
;
Gemcitabine
;
RNA, Long Noncoding/metabolism*
;
MicroRNAs/genetics*
;
Gallbladder Neoplasms/genetics*
;
Cell Line, Tumor
;
Animals
;
Mice
;
Drug Resistance, Neoplasm/genetics*
;
Mice, Nude
;
Antimetabolites, Antineoplastic
;
Gene Expression Regulation, Neoplastic
2.Effect and Mechanism of Atorvastatin on Reversing Drug Resistance in Leukemia by Regulating Glycolysis through PTEN/mTOR Pathway.
Journal of Experimental Hematology 2023;31(1):38-44
OBJECTIVE:
To investigate the influence and mechanism of atorvastatin on glycolysis of adriamycin resistant acute promyelocytic leukemia (APL) cell line HL-60/ADM.
METHODS:
HL-60/ADM cells in logarithmic growth phase were treated with different concentrations of atorvastatin, then the cell proliferation activity was measured by CCK-8 assay, the apoptosis was detected by flow cytometry, the glycolytic activity was checked by glucose consumption test, and the protein expressions of PTEN, p-mTOR, PKM2, HK2, P-gp and MRP1 were detected by Western blot. After transfection of PTEN-siRNA into HL-60/ADM cells, the effects of low expression of PTEN on atorvastatin regulating the behaviors of apoptosis and glycolytic metabolism in HL-60/ADM cells were further detected.
RESULTS:
CCK-8 results showed that atorvastatin could inhibit the proliferation of HL-60/ADM cells in a concentration-dependent and time-dependent manner (r=0.872, r=0.936), and the proliferation activity was inhibited most significantly when treated with 10 μmol/L atorvastatin for 24 h, which was decreased to (32.3±2.18)%. Flow cytometry results showed that atorvastatin induced the apoptosis of HL-60/ADM cells in a concentration-dependent manner (r=0.796), and the apoptosis was induced most notably when treated with 10 μmol/L atorvastatin for 24 h, which reached to (48.78±2.95)%. The results of glucose consumption test showed that atorvastatin significantly inhibited the glycolytic activity of HL-60/ADM cells in a concentration-dependent and time-dependent manner (r=0.915, r=0.748), and this inhibition was most strikingly when treated with 10 μmol/L atorvastatin for 24 h, reducing the relative glucose consumption to (46.53±1.71)%. Western blot indicated that the expressions of p-mTOR, PKM2, HK2, P-gp and MRP1 protein were decreased in a concentration-dependent manner (r=0.737, r=0.695, r=0.829, r=0.781, r=0.632), while the expression of PTEN protein was increased in a concentration-dependent manner (r=0.531), when treated with different concentrations of atorvastatin for 24 h. After PTEN-siRNA transfected into HL-60/ADM cells, it showed that low expression of PTEN had weakened the promoting effect of atorvastatin on apoptosis and inhibitory effect on glycolysis and multidrug resistance.
CONCLUSION
Atorvastatin can inhibit the proliferation, glycolysis, and induce apoptosis of HL-60/ADM cells. It may be related to the mechanism of increasing the expression of PTEN, inhibiting mTOR activation, and decreasing the expressions of PKM2 and HK2, thus reverse drug resistance.
Humans
;
Atorvastatin/pharmacology*
;
PTEN Phosphohydrolase/pharmacology*
;
Sincalide/metabolism*
;
Drug Resistance, Neoplasm/genetics*
;
TOR Serine-Threonine Kinases/metabolism*
;
Leukemia, Promyelocytic, Acute/drug therapy*
;
Doxorubicin/pharmacology*
;
Apoptosis
;
RNA, Small Interfering/pharmacology*
;
Glycolysis
;
Glucose/therapeutic use*
;
Cell Proliferation
3.Effects of leptin on proliferation and differentiation of hypoxic rat retinal progenitor cells in vitro.
Yao XING ; Zi Yao LIU ; Xiao Hui ZHANG ; Jian Ming WANG
Journal of Southern Medical University 2022;42(3):354-359
OBJECTIVE:
To investigate the the effects of leptin on the proliferation, differentiation and PTEN expression of rat retinal progenitor cells (RPCs) cultured under hypoxic condition.
METHODS:
SD rat RPCs were cultured in normoxic conditions or exposed to hypoxia in the presence of 0, 0.3, 1.0, 3.0, 10, and 30 nmol/L leptin for 12, 48 and 72 h, and the cell viability was assessed using cell counting kit 8 (CCK 8) assay. The RPCs in primary culture were divided into control group, hypoxia group, and hypoxia+leptin group, and after 48 h of culture, the cell medium was replaced with differentiation medium and the cells were further cultured for 6 days. Immunofluorescence staining was employed to detect the cells positive for β-tubulin III and GFAP, and Western blotting was used to examine the expression of PTEN at 48 h of cell culture.
RESULTS:
The first generation of RPCs showed suspended growth in the medium with abundant and bright cellular plasma and formed mulberry like cell spheres after 2 days of culture. Treatment with low-dose leptin (below 3.0 nmol/L) for 48 h obviously improved the viability of RPCs cultured in hypoxia, while at high concentrations (above 10 nmol/L), leptin significantly suppressed the cell viability (P < 0.05). The cells treated with 3.0 nmol/L leptin for 48 h showed the highest viability (P < 0.05). After treatment with 3.0 nmol/L leptin for 48 h, the cells with hypoxic exposure showed similar GFAP and β-tubulin Ⅲ positivity with the control cells (P>0.05), but exhibited an obvious down-regulation of PTEN protein expression compared with the control cells (P < 0.05).
CONCLUSION
In rat RPCs with hypoxic exposure, treatment with low dose leptin can promote the cell proliferation and suppress cellular PTEN protein expression without causing significant effects on cell differentiation.
Animals
;
Cell Differentiation/drug effects*
;
Cell Hypoxia/drug effects*
;
Cell Proliferation/drug effects*
;
Cells, Cultured
;
Leptin/pharmacology*
;
PTEN Phosphohydrolase/metabolism*
;
Rats
;
Rats, Sprague-Dawley
;
Retina/metabolism*
;
Stem Cells/metabolism*
;
Tubulin
4.Effect of resveratrol on PTEN expression and fibrosis of renal tubular epithelial cells in a high-glucose environment.
Lan SUN ; Xu-Xian WU ; Yu-Fen PENG
China Journal of Chinese Materia Medica 2021;46(18):4793-4799
This study explored the effects of resveratrol(Res) on the expression of phosphatase and tensin homolog deleted on chromosome ten(PTEN) and the fibrosis of rat renal tubular epithelial cells in a high-glucose environment and the possible mechanism underlying the fibrosis reduction. After the pretreatment of rat renal tubular epithelial cells(NRK-52 E) cultured in a high-glucose condition with Res or PTEN inhibitor SF1670, they were divided into several groups, i.e., normal glucose(NG), normal glucose + SF1670(NS), high glucose(HG), high glucose + SF1670(HS), high glucose + Res at different concentrations(5, 10, 25 μmol·L~(-1)). The expression and distribution of E-cadherin and α-SMA in renal tubular epithelial cells were observed by immunofluorescence cytochemistry. The protein expression levels of PTEN, E-cadherin, α-SMA, p-Akt~((Thr308)) and collagen Ⅳ were determined by Western blot. Real-time PCR was employed to detect the expression of PTEN mRNA. Compared with the NG group, the HG group witnessed the reduced expression of PTEN mRNA, PTEN protein and E-cadherin protein, but saw the increased expression of α-SMA, p-Akt~((Thr308)) and collagen Ⅳ proteins. Besides, with the increase in Res concentration, the expression levels of PTEN mRNA, PTEN protein and E-cadherin protein gradually increased, while those of α-SMA, collagen Ⅳ, p-Akt~((Thr308)) proteins gradually decreased in the Res groups, showing a dose-effect dependence, compared with the HG group. No distinct difference was found between the NS group and the NG group. The expression level of E-cadherin was even lower and those of α-SMA, p-Akt~((Thr308)), and collagen Ⅳ were higher in the HS group than in the HG group, with no marked difference shown in the two groups in terms of PTEN mRNA and protein. Although the PTEN inhibitor did not affect PTEN, the expression changes of the other proteins were opposite to the results after Res treatment and the fibrosis was aggravated, which suggested that SF1670 promoted the fibrosis by inhibiting PTEN, activating Akt and increasing the synthesis of collagen Ⅳ and other extracellular matrix. The results show that Res can antagonize the high glucose-mediated fibrosis of renal tubular epithelial cells. This may be achieved via the up-regulation of PTEN and the inhibition of PI3 K/Akt signaling pathway.
Animals
;
Epithelial Cells
;
Fibrosis
;
Glucose
;
PTEN Phosphohydrolase/genetics*
;
Rats
;
Resveratrol/pharmacology*
5.Mechanism of gambogenic acid in resisting angiogenesis of lung cancer in vitro.
Hui CHENG ; Yun-Long WANG ; Jing-Jing SU ; Rong-Feng HU ; Qing-Lin LI
China Journal of Chinese Materia Medica 2018;43(21):4311-4316
The aim of this paper was to observe the effect of gambogenic acid on angiogenesis of lung cancer and its preliminary mechanism. After culturing lung adenocarcinoma A549 cells, the conditioned medium was treated with gambogenic acid and then used to culture human umbilical vein endothelial cells (HUVECs) to establish the indirect contact cell co-culture system. A two-dimensional culture model of HUVEC was established with matrigel to observe the effect of gambogenic acid on angiogenesis. DAPI staining was used to observe the morphological changes in HUVEC cells after treatment with gambogenic acid under the fluorescence microscope. Annexin V-FITC/PI staining and flow cytometry analysis were used to determine gambogenic acid's effect on HUVEC cell apoptosis rate. The protein expressions of PI3K, p-PI3K, Akt, p-Akt were measured by Western blot. PTEN-siRNA was transfected into cells, and RT-PCR was used to detect the expression levels of PI3K and Akt genes. Gambogenic acid can significantly inhibit angiogenesis, and its inhibitory effect was dose-dependent. DAPI staining showed apoptotic morphological features of HUVEC cells under fluorescence microscope. Annexin V-FITC/PI staining showed that gambogenic acid induced apoptosis in HUVECs. The results of Western blot showed that the expressions of p-PI3K and p-Akt protein were down-regulated with gambogenic acid, while the expressions of PI3K and Akt protein was insignificant. The results of RT-PCR indicated that the expressions of PI3K and Akt protein were up-regulated by PTEN siRNA. Gambogenic acid can inhibit angiogenesis in lung cancer in vitro, and the mechanism of inhibiting angiogenesis may be related to the PI3K/Akt signaling pathway.
A549 Cells
;
Apoptosis
;
Coculture Techniques
;
Human Umbilical Vein Endothelial Cells
;
drug effects
;
Humans
;
Lung Neoplasms
;
drug therapy
;
pathology
;
Neovascularization, Pathologic
;
pathology
;
PTEN Phosphohydrolase
;
genetics
;
Phosphatidylinositol 3-Kinases
;
metabolism
;
Proto-Oncogene Proteins c-akt
;
metabolism
;
Transfection
;
Xanthenes
;
pharmacology
6.MiR-145 inhibits drug resistance to Oxaliplatin in colorectal cancer cells through regulating G protein coupled receptor 98.
Qiang FU ; Jing CHENG ; Jindai ZHANG ; Yonglei ZHANG ; Xiaobing CHEN ; Jianguo XIE ; Suxia LUO
Chinese Journal of Gastrointestinal Surgery 2017;20(5):566-570
OBJECTIVETo predict and identify the target gene of miR-145, and to explore the underlying mechanism of the inhibition of miR-145 on drug resistance to Oxaliplatin (L-OHP) in human colorectal cancer cells.
METHODSL-OHP-resistant human colorectal cancer cell line (HCT116/L-OHP) was established in vitro by exposing to increased concentrations of L-OHP in cell culture medium. MiR-145-mimics and its negative control (NC-miRNA) were transfected into HCT116/L-OHP cells using liposome to establish HCT116/L-OHPover-expressing miR-145 and HCT116/L-OHP. The target genes of miR-145 were predicted by bioinformatic analysis, and validated by dual luciferase activity assay. After determination of G protein coupled receptor 98(GPR98) as target gene, corresponding plasmids were constructed and transfected to establish HCT116/L-OHPover-expressing GPR98 and HCT116/L-OHP. HCT116/L-OHP cells over-expressing both GPR98 and miR-145 (HCT116/L-OHP) were acquired through modification of the binding sites of GPR98 cDNA with miR-145. CCK-8 assay was used to assess the proliferation (A value) and sensitivity to L-OHP (the lower the IC50, the stronger the sensitivity) in HCT116/L-OHP cells. Real-time quantitative PCR was used to measure the mRNA expression of miR-145 and GPR98. Western blot was used to examine the protein expression of GPR98 and drug-resistant associated protein, such as P-glycoprotein (gp), multiple drug-resistance protein 1(MRP1), cancer-inhibition gene PTEN.
RESULTSHCT116/L-OHP cell line was successfully established with ICof (42.34±1.05) mg/L and miR-145 mRNA expression of 0.27±0.04, which was higher than (9.81±0.95) mg/L (t=39.784, P=0.000) and lower than 1.00±0.09 (t=13.021, P=0.000) in HCT116 cells. Based on HCT116/L-OHP cells, HCT116/L-OHPcells were established successfully, with relative miR-145 expression of 10.01±1.05, which was higher than 1.06±0.14 in HCT116/L-OHPand 1.00±0.16 in HCT116/L-OHP (F=161.797, P=0.000). GPR98 was identified to be the target gene of miR-145. The relative mRNA and protein expressions of GPR98 in HCT116/L-OHPcells were 8.48±0.46 and 1.71±0.09, respectively, which were higher than those in HCT116/L-OHP(mRNA: 3.65±0.40, protein: 1.21±0.10) and HCT116/L-OHP (mRNA: 3.49±0.35, protein: 1.22±0.08; all P<0.05). The A value was 1.31±0.10, and the relative protein expressions of P-gp and MRP1 were 1.53±0.18 and 1.49±0.20 in HCT116/L-OHPcells, which were higher than those in HCT116/L-OHP (A value: 0.82±0.08, relative protein expression: 1.00±0.06 and 1.21±0.13, all P<0.05). The A value was 0.89±0.08, and the relative protein expressions of P-gp and MRP were 1.02±0.24 and 1.38±0.25 in HCT116/L-OHPcells, which were higher than those in HCT116/L-OHP(A value: 0.20±0.05, relative protein expression: 0.20±0.07, 0.55±0.10, all P<0.05). The relative protein expression of PTEN in HCT116/L-OHPcells was 0.12±0.03, which was lower than 1.25±0.14 in HCT116/L-OHP cells(P<0.05). In addition, relative protein expressions of P-gp and MRP1 were 1.02±0.24 and 1.38±0.25 in HCT116/L-OHPcells, which were higher than those in HCT116/L-OHPcells (0.20±0.07 and 0.55±0.10), while PTEN expression in HCT116/L-OHPcells was lower as compared to HCT116/L-OHPcells (1.41±0.16 vs. 1.98±0.13, P<0.05).
CONCLUSIONMiR-145 inhibits drug resistance to L-OHP of HCT116 cells through suppressing the expression of target gene GPR98.
ATP Binding Cassette Transporter, Sub-Family B ; drug effects ; ATP-Binding Cassette, Sub-Family B, Member 1 ; drug effects ; Cell Line, Tumor ; drug effects ; physiology ; Colorectal Neoplasms ; physiopathology ; Down-Regulation ; drug effects ; genetics ; Drug Resistance, Neoplasm ; drug effects ; genetics ; physiology ; HCT116 Cells ; drug effects ; physiology ; Humans ; In Vitro Techniques ; MicroRNAs ; genetics ; pharmacology ; Multidrug Resistance-Associated Proteins ; drug effects ; Organoplatinum Compounds ; pharmacology ; PTEN Phosphohydrolase ; drug effects ; RNA, Messenger ; Receptors, G-Protein-Coupled ; drug effects ; genetics
7.Effect of DJ-1 silencing by RNA interference on growth of xenografted human laryngeal squamous cell carcinoma Hep-2 cells in nude mice.
Zhisen SHEN ; Hongxia DENG ; Dong YE ; Jian ZHANG ; Shijie QIU ; Qun LI ; Xiang CUI
Journal of Zhejiang University. Medical sciences 2016;45(4):349-355
To investigate the effect of silencing DJ-1 on xenografted human laryngeal squamous cell carcinoma (LSCC) Hep-2 cells in nude mice.Xenograft model of human LSCC was established by subcutaneous transplantation of Hep-2 cells in 24 nude mice. The LSCC-bearing nude mice were randomly divided into 3 groups (=8 in each):DJ-1 siRNA low dose group and DJ-1 siRNA high dose group were injected in tumors with 20 μg of DJ-1 siRNA or 40 μg of DJ-1 siRNA in 50 μL, respectively; control group was injected with 5% glucose solution in 50 μL, twice a week for 3 weeks. The weight and size of tumors were measured before injection. The animals were sacrificed 48 h after the final treatment, and the tumors were harvested and weighed. The apoptosis and proliferation of tumor cells were determined; the expressions of Caspase-3 and Ki-67 in tumor specimens were detected with immunohistochemistry. The expression of DJ-1, PTEN, survivin mRNA and protein in tumor tissues were detected by RT-PCR and Western blotting, respectively.Tumor weight in low dose group[(0.66±0.15)g] and high dose group[(0.48±0.11)g] were significantly lower than that in control group[(0.83±0.16)g, all<0.05]. The inhibition rates of low dose group and high dose group were (20.48±0.18)% and (42.16±0.13)%, respectively. Immunohistochemistry showed that the expression of Caspase-3 was increased and Ki-67 was reduced in tumor specimens, compared with the control group (all<0.05). RT-PCR and Western blot results showed that in low dose group and high dose group the mRNA and protein expression of DJ-1 and survivin significantly decreased (all<0.05), while PTEN mRNA and protein content increased (all<0.05).High dose DJ-1 siRNA can inhibit the tumor growth in human LSCC xenograft nude mouse model, which indicates that down-regulating DJ-1 and survivin, and up-regulating PTEN expression may lead to blockage of PI3K-PKB/Akt signaling pathway and promoting tumor cell apoptosis.
Animals
;
Antineoplastic Agents
;
pharmacology
;
Apoptosis
;
drug effects
;
genetics
;
Carcinoma, Squamous Cell
;
chemistry
;
genetics
;
physiopathology
;
Caspase 3
;
analysis
;
drug effects
;
Cell Line, Tumor
;
chemistry
;
drug effects
;
physiology
;
transplantation
;
Cell Proliferation
;
drug effects
;
Down-Regulation
;
Gene Expression Regulation
;
drug effects
;
genetics
;
physiology
;
Head and Neck Neoplasms
;
chemistry
;
genetics
;
physiopathology
;
Heterografts
;
drug effects
;
physiology
;
Humans
;
Inhibitor of Apoptosis Proteins
;
analysis
;
drug effects
;
Ki-67 Antigen
;
analysis
;
drug effects
;
Laryngeal Neoplasms
;
chemistry
;
genetics
;
physiopathology
;
Mice, Nude
;
PTEN Phosphohydrolase
;
analysis
;
drug effects
;
Phosphatidylinositol 3-Kinases
;
drug effects
;
Protein Deglycase DJ-1
;
pharmacology
;
Proto-Oncogene Proteins c-akt
;
drug effects
;
RNA Interference
;
physiology
;
RNA, Messenger
;
pharmacology
;
RNA, Small Interfering
;
physiology
;
Signal Transduction
;
drug effects
;
genetics
;
physiology
8.MiR-106b-5p Inhibits Tumor Necrosis Factor-α-induced Apoptosis by Targeting Phosphatase and Tensin Homolog Deleted on Chromosome 10 in Vascular Endothelial Cells.
Jing ZHANG ; ; Su-Fang LI ; ; Hong CHEN ; ; Jun-Xian SONG ;
Chinese Medical Journal 2016;129(12):1406-1412
BACKGROUNDApoptosis of endothelial cells (ECs) plays a key role in the development of atherosclerosis and there are also evidence indicated that phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a viable target in therapeutic approaches to prevent vascular ECs apoptosis. Aberrant miR-106b-5p expression has been reported in the plasma of patients with unstable atherosclerotic plaques. However, the role and underlying mechanism of miR-106-5p in the genesis of atherosclerosis have not been addressed. In this study, we explored the anti-apoptotic role of miR-106-5p by regulating PTEN expression in vascular ECs.
METHODSReal-time reverse transcription polymerase chain reaction (RT-PCR) was performed to detect the expression levels of miR-106b-5p in human atherosclerotic plaques and normal vascular tissues. Human umbilical vein endothelial cells (HUVEC) were transfected with miR-106b-5p mimic or negative control mimic, and apoptosis was induced by serum starvation and tumor necrosis factor-α (TNF-α) treat. Western blotting and real-time RT-PCR experiments were used to detect PTEN expression levels and TNF-α-induced apoptosis was evaluated by the activation of caspase-3 and cell DNA fragmentation levels in HUVEC.
RESULTSThe expression of miR-106b-5p was significantly downregulated in plaques than in normal vascular tissues. TNF-α significantly downregulated miR-106b-5p expression levels and upregulated activation of caspase-3 and cell DNA fragmentation levels in HUVEC. Overexpression of miR-106b-5p with miR-106b-5p mimic inhibited PTEN expression and TNF-α-induced apoptosis in HUVEC. Luciferase reporter assays confirmed that miR-106b-5p binds to PTEN mRNA 3' untranslated region site.
CONCLUSIONMiR-106b-5p could inhibit the expression of PTEN in vascular ECs, which could block TNF-α-induced activation of caspase-3, thus prevent ECs apoptosis in atherosclerosis diseases.
Adult ; Aged ; Apoptosis ; drug effects ; Cells, Cultured ; Endothelial Cells ; cytology ; drug effects ; metabolism ; Female ; Human Umbilical Vein Endothelial Cells ; cytology ; drug effects ; metabolism ; Humans ; Male ; MicroRNAs ; genetics ; metabolism ; Middle Aged ; PTEN Phosphohydrolase ; metabolism ; Protein Binding ; drug effects ; Real-Time Polymerase Chain Reaction ; Tumor Necrosis Factor-alpha ; pharmacology
9.Curcumin induces apoptosis by PTEN/PI3K/AKT pathway in EC109 cells.
Xiu-juan LI ; Yu-zhen LI ; Chun-ting JIN ; Jie FAN ; Hai-jun LI
Chinese Journal of Applied Physiology 2015;31(2):174-177
OBJECTIVETo study the molecular mechanism of curcumin in human esophageal carcinoma cell line (EC109).
METHODSEC109 cells were cultivated in vitro. When 80%-90% confluence was reached, they were treated with curcumin in different concentrations (15-120 µmol/L). The effects on cell proliferation were examined by CCK-8 colorimetry. The ultrastructure of EC109 cells were detected with transmission electron microscope(TEM). The cells apoptosis was observed with laser confocal microscope(LCM) by AnnexinV-FITC/PI double staining. The proteins level of PTEN, AKT, GSK3β and Caspase 3 were tested by flow cytometry(FCM) .
RESULTSCCK-8 test showed that curcumin could inhibit the proliferation of EC109 cells in a time- and concentration-dependent manner. TEM and LCM examinations indicated that curcumin could make EC109 cells apoptosis. The data of FCM showed that curcumin could increase the expression of PTEN, GSK3β and Caspase 3, decreased the expression of AKT.
CONCLUSIONThe effects of curcumin on inhibiting proliferation and promoting apoptosis of EC109 cells were related with increased expression of PTEN and inhibition of PI3K/AKT signaling pathway.
Apoptosis ; Caspase 3 ; metabolism ; Cell Line, Tumor ; Cell Proliferation ; Curcumin ; pharmacology ; Esophageal Neoplasms ; metabolism ; Glycogen Synthase Kinase 3 ; metabolism ; Glycogen Synthase Kinase 3 beta ; Humans ; PTEN Phosphohydrolase ; metabolism ; Phosphatidylinositol 3-Kinases ; metabolism ; Proto-Oncogene Proteins c-akt ; metabolism ; Signal Transduction
10.The effects of curcumin on PTEN/PI3K/Akt pathway in Ec109 cells.
Xiu-juan LI ; Qiang LUO ; Li SUN ; Hua LIT ; Chun-ting JIN ; Jie FAN ; Yu-zhen LI
Chinese Journal of Applied Physiology 2015;31(5):465-468
OBJECTIVETo investigate the inhibition effect of curcumin on the proliferation of the human esophageal carcinoma cell line Ec109 and its impact on PEN/PI3K/Akt signaling pathway.
METHODSEsophageal carcinoma Ec109 cells were cultured in vitro conventionally and were treated with curcumin at different concentrations. The cell proliferation level was examined by MIT colorimetry, the ultrastructure of curcumin-treated Ec109 cells were detected with transmission electron microscope (TEM) and cell apoptosis was observed by FCM with AnnexinV-FITC/PI double staining. The protein levels of PTEN, Akt, GSK3P and Caspase 3 of curcumin-treated Ec109 cells were detected by Western blot.
RESULTSMTT test showed that curcumin could inhibit the proliferation of Ec109 cells in a time and concentration-dependent manner. TEM examination indicated that curcumin could induce Ec109 cell apoptosis. FCM detection showed that Ec109 cell apoptotic rate increased significantly with the increase of drug concentration. On the other hand, curcumin could promote the expression of PTEN, GSK3beta and Caspase 3 yet reduce the expression of Akt.
CONCLUSIONCurcumin could obviously up-regulate the expression of PTEN, GSK3beta and Caspase 3, surpress PI3K/Akt signaling pathway and hence inhibit the proliferation of Ec109 cells.
Apoptosis ; drug effects ; Caspase 3 ; metabolism ; Cell Line, Tumor ; Cell Proliferation ; drug effects ; Curcumin ; pharmacology ; Glycogen Synthase Kinase 3 ; metabolism ; Glycogen Synthase Kinase 3 beta ; Humans ; Oncogene Protein v-akt ; metabolism ; PTEN Phosphohydrolase ; metabolism ; Phosphatidylinositol 3-Kinases ; metabolism ; Signal Transduction ; drug effects

Result Analysis
Print
Save
E-mail