1.Exogenous administration of heparin-binding epidermal growth factor-like growth factor improves erectile function in mice with bilateral cavernous nerve injury.
Minh Nhat VO ; Mi-Hye KWON ; Fang-Yuan LIU ; Fitri Rahma FRIDAYANA ; Yan HUANG ; Soon-Sun HONG ; Ju-Hee KANG ; Guo Nan YIN ; Ji-Kan RYU
Asian Journal of Andrology 2025;27(6):697-706
Prostate cancer is the second most common malignancy and the sixth leading cause of cancer-related death in men worldwide. Radical prostatectomy (RP) is the standard treatment for localized prostate cancer, but the procedure often results in postoperative erectile dysfunction (ED). The poor efficacy of phosphodiesterase 5 inhibitors after surgery highlights the need to develop new therapies to enhance cavernous nerve regeneration and improve the erectile function of these patients. In the present study, we aimed to examine the potential of heparin-binding epidermal growth factor-like growth factor (HB-EGF) in preserving erectile function in cavernous nerve injury (CNI) mice. We found that HB-EGF expression was reduced significantly on the 1 st day after CNI in penile tissue. Ex vivo and in vitro studies showed that HB-EGF promotes major pelvic ganglion neurite sprouting and neuro-2a (N2a) cell migration. In vivo studies showed that exogenous HB-EGF treatment significantly restored the erectile function of CNI mice to 86.9% of sham levels. Immunofluorescence staining showed that mural and neuronal cells were preserved by inducing cell proliferation and reducing apoptosis and reactive oxygen species production. Western blot analysis showed that HB-EGF upregulated protein kinase B and extracellular signal-regulated kinase activation and neurotrophic factor expression. Overall, HB-EGF is a major promising therapeutic agent for treating ED in postoperative RP.
Animals
;
Male
;
Heparin-binding EGF-like Growth Factor/therapeutic use*
;
Erectile Dysfunction/etiology*
;
Mice
;
Penis/drug effects*
;
Nerve Regeneration/drug effects*
;
Penile Erection/drug effects*
;
Peripheral Nerve Injuries/drug therapy*
;
Cell Proliferation/drug effects*
;
Apoptosis/drug effects*
;
Cell Movement/drug effects*
;
Prostatectomy/adverse effects*
;
Mice, Inbred C57BL
;
Reactive Oxygen Species/metabolism*
2.Research Progress on the Regulation of Third-generation EGFR-TKIs Resistance in Non-small Cell Lung Cancer by Redox Homeostasis.
Ting LUO ; Chen FANG ; Feng QIU
Chinese Journal of Lung Cancer 2025;28(7):521-532
Non-small cell lung cancer (NSCLC) ranks among the most lethal malignancies worldwide. The clinical application of epidermal growth factor receptor-tyrosine kinase inhibitors (EGFR-TKIs) have successfully revolutionized the treatment paradigm for EGFR-mutant NSCLC, significantly prolonging progression-free survival and establishing EGFR-TKIs as the standard first-line therapy for advanced lung adenocarcinoma. However, acquired resistance remains a major obstacle to sustained clinical benefit, with mechanisms that are highly heterogeneous. A phenomenon of "oxidative stress compensation" is commonly observed in EGFR-TKIs-resistant cells, where in redox homeostasis, through the precise regulation of reactive oxygen species (ROS) generation and elimination, plays a pivotal role in maintaining the balance between tumor cell proliferation and apoptosis. This review aims to innovatively construct a theoretical framework describing how dynamic redox regulation influences resistance to third-generation EGFR-TKIs. It focuses on the multifaceted roles of ROS in both EGFR-dependent and EGFR-independent resistance mechanisms, and further explores therapeutic strategies that target ROS kinetic thresholds and antioxidant systems. These insights not only propose an innovative "metabolic checkpoint" regulatory pathway to overcome acquired resistance to third-generation EGFR-TKIs, but also lay a molecular foundation for developing the redox biomarker-based dynamic therapeutic decision-making systems, thereby facilitating a shift in NSCLC therapy from single-target inhibition toward multi-dimensional metabolic remodeling in the context of precision medicine.
.
Humans
;
Carcinoma, Non-Small-Cell Lung/genetics*
;
ErbB Receptors/genetics*
;
Drug Resistance, Neoplasm/drug effects*
;
Lung Neoplasms/genetics*
;
Oxidation-Reduction/drug effects*
;
Homeostasis/drug effects*
;
Protein Kinase Inhibitors/therapeutic use*
;
Reactive Oxygen Species/metabolism*
;
Animals
3.Probable Molecular Targeting of Inhibitory Effect of Carvacrol-Loaded Bovine Serum Albumin Nanoparticles on Human Breast Adenocarcinoma Cells.
Pouria KHODAVANDI ; Neda KARAMI ; Alireza KHODAVANDI ; Fahimeh ALIZADEH ; Esmaeel Panahi KOKHDAN ; Ahmad ZAHERI
Chinese journal of integrative medicine 2025;31(4):336-346
OBJECTIVE:
To entrap carvacrol (CAR) in bovine serum albumin nanoparticles (BSANPs) to form CAR-loaded BSANPs (CAR@BSANPs) and to explore the anti-cancer effects in breast adenocarcinoma cells (MCF-7 cells) treated with CAR and CAR@BSANPs.
METHODS:
A desolvation method was used to synthesize BSANPs and CAR@BSANPs. The BSANPs and CAR@BSANPs were characterized by several physicochemical methods, including visual observation, high-resolution field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and high-performance liquid chromatography. MCF-7 cells were used and analyzed after 24 h of exposure to CAR and CAR@BSANPs at half-maximal inhibitory concentration. The anti-proliferative, apoptotic, reactive oxygen species (ROS), and nitric oxide (NO) scavenging activity as well as gene expression analysis were investigated by the cell viability assay, phase-contrast microscopy, 2',7'-dichlorofluorescein-diacetate assay, Griess-Illosvoy colorimetric assay, and quantitative real-time polymerase chain reaction, respectively.
RESULTS:
CAR and CAR@BSANPs showed anti-proliferative, apoptotic, ROS generation, and NO scavenging effects on MCF-7 cells. Expression profile of B-cell lymphoma 2-like 11 (BCL2L11), vascular endothelial growth factor A (VEGFA), hypoxia inducible factor factor-1α (HIF1A), BCL2L11/apoptosis regulator (BAX), and BCL2L11/Bcl2 homologous antagonist/killer 1 (BAK1) ratios revealed downregulated genes; and BAX, BAK1, and CASP8 were upregulated by CAR and CAR@BSANPs treatment. In vitro anticancer assays of the CAR and CAR@BSANPs showed that CAR@BSANPs demonstrated higher therapeutic efficacy in the MCF-7 cells than CAR.
CONCLUSIONS
CAR and CAR@BSANPs affect gene expression and may subsequently reduce the growth and proliferation of the MCF-7 cells. Molecular targeting of regulatory genes of the MCF-7 cells with CAR and CAR@BSANPs may be an effective therapeutic strategy against breast cancer.
Humans
;
Cymenes
;
Nanoparticles/ultrastructure*
;
MCF-7 Cells
;
Breast Neoplasms/genetics*
;
Apoptosis/drug effects*
;
Serum Albumin, Bovine/chemistry*
;
Monoterpenes/therapeutic use*
;
Adenocarcinoma/genetics*
;
Cell Proliferation/drug effects*
;
Reactive Oxygen Species/metabolism*
;
Female
;
Cell Survival/drug effects*
;
Animals
;
Gene Expression Regulation, Neoplastic/drug effects*
;
Nitric Oxide/metabolism*
;
Cattle
4.Gentiopicroside Alleviates Atherosclerosis by Suppressing Reactive Oxygen Species-Dependent NLRP3 Inflammasome Activation in Vascular Endothelial Cells via SIRT1/Nrf2 Pathway.
Zhu-Qing LI ; Feng ZHANG ; Qi LI ; Li WANG ; Xiao-Qiang SUN ; Chao LI ; Xue-Mei YIN ; Chun-Lei LIU ; Yan-Xin WANG ; Xiao-Yu DU ; Cheng-Zhi LU
Chinese journal of integrative medicine 2025;31(2):118-130
OBJECTIVE:
To evaluate the protective effects of gentiopicroside (GPS) against reactive oxygen species (ROS)-induced NOD-like receptor family, pyrin domain containing 3 (NLRP3) inflammasome activation in endothelial cells, aiming to reduce atherosclerosis.
METHODS:
Eight-week-old male ApoE-deficient mice were randomly divided into 2 groups (n=10 per group): the vehicle group and the GPS treatment group. Both groups were fed a high-fat diet for 16 weeks. GPS (40 mg/kg per day) was administered by oral gavage to the GPS group, while the vehicle group received an equivalent volume of the vehicle solution. At the end of the treatment, blood and aortic tissues were collected for assessments of atherosclerosis, lipid profiles, oxidative stress, and molecular expressions related to NLRP3 inflammasome activation, ROS production, and apoptosis. Additionally, in vitro experiments on human aortic endothelial cells treated with oxidized low-density lipoprotein (ox-LDL) were conducted to evaluate the effects of GPS on NLRP3 inflammasome activation, pyroptosis, apoptosis, and ROS production, specifically examining the role of the sirtuin 1 (SIRT1)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. SIRT1 and Nrf2 inhibitors were used to confirm the pathway's role.
RESULTS:
GPS treatment significantly reduced atherosclerotic lesions in the en face aorta (P<0.01), as well as in the thoracic and abdominal aortic regions, and markedly decreased sinus lesions within the aortic root (P<0.05 or P<0.01). Additionally, GPS reduced oxidative stress markers and proinflammatory cytokines, including interleukin (IL)-1 β and IL-18, in lesion areas (P<0.05, P<0.01). In vitro, GPS inhibited ox-LDL-induced NLRP3 activation, as evidenced by reduced NLRP3 (P<0.01), apoptosis-associated speck-like protein containing a CARD, cleaved-caspase-1, and cleaved-gasdermin D expressions (all P<0.01). GPS also decreased ROS production, apoptosis, and pyroptosis, with the beneficial effects being significantly reversed by SIRT1 or Nrf2 inhibitors.
CONCLUSION
GPS exerts an antiatherogenic effect by inhibiting ROS-dependent NLRP3 inflammasome activation via the SIRT1/Nrf2 pathway.
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Iridoid Glucosides/therapeutic use*
;
NF-E2-Related Factor 2/metabolism*
;
Animals
;
Atherosclerosis/metabolism*
;
Inflammasomes/drug effects*
;
Male
;
Sirtuin 1/metabolism*
;
Signal Transduction/drug effects*
;
Humans
;
Endothelial Cells/pathology*
;
Mice
;
Oxidative Stress/drug effects*
;
Apoptosis/drug effects*
;
Lipoproteins, LDL
;
Mice, Inbred C57BL
5.Quercetin Confers Protection against Sepsis-Related Acute Respiratory Distress Syndrome by Suppressing ROS/p38 MAPK Pathway.
Wei-Chao DING ; Juan CHEN ; Quan LI ; Yi REN ; Meng-Meng WANG ; Wei ZHANG ; Xiao-Hang JI ; Xin-Yao WU ; Shi-Nan NIE ; Chang-Bao HUANG ; Zhao-Rui SUN
Chinese journal of integrative medicine 2025;31(11):1011-1020
OBJECTIVE:
To identify the underlying mechanism by which quercetin (Que) alleviates sepsis-related acute respiratory distress syndrome (ARDS).
METHODS:
In vivo, C57BL/6 mice were assigned to sham, cecal ligation and puncture (CLP), and CLP+Que (50 mg/kg) groups (n=15 per group) by using a random number table. The sepsisrelated ARDS mouse model was established using the CLP method. In vitro, the murine alveolar macrophages (MH-S) cells were classified into control, lipopolysaccharide (LPS), LPS+Que (10 μmol/L), and LPS+Que+acetylcysteine (NAC, 5 mmol/L) groups. The effect of Que on oxidative stress, inflammation, and apoptosis in mice lungs and MH-S cells was determined, and the mechanism with reactive oxygen species (ROS)/p38 mitogen-activated protein kinase (MAPK) pathway was also explored both in vivo and in vitro.
RESULTS:
Que alleviated lung injury in mice, as reflected by a reversal of pulmonary histopathologic changes as well as a reduction in lung wet/dry weight ratio and neutrophil infiltration (P<0.05 or P<0.01). Additionally, Que improved the survival rate and relieved gas exchange impairment in mice (P<0.01). Que treatment also remarkedly reduced malondialdehyde formation, superoxide dismutase and catalase depletion, and cell apoptosis both in vivo and in vitro (P<0.05 or P<0.01). Moreover, Que treatment diminished the release of inflammatory factors interleukin (IL)-1β, tumor necrosis factor-α, and IL-6 both in vivo and in vitro (P<0.05 or P<0.01). Mechanistic investigation clarifified that Que administration led to a decline in the phosphorylation of p38 MAPK in addition to the suppression of ROS expression (P<0.01). Furthermore, in LPS-induced MH-S cells, ROS inhibitor NAC further inhibited ROS/p38 MAPK pathway, as well as oxidative stress, inflammation, and cell apoptosis on the basis of Que treatment (P<0.05 or P<0.01).
CONCLUSION
Que was found to exert anti-oxidative, anti-inflammatory, and anti-apoptotic effects by suppressing the ROS/p38 MAPK pathway, thereby conferring protection for mice against sepsis-related ARDS.
Animals
;
Sepsis/drug therapy*
;
Quercetin/therapeutic use*
;
Respiratory Distress Syndrome/enzymology*
;
p38 Mitogen-Activated Protein Kinases/metabolism*
;
Mice, Inbred C57BL
;
Reactive Oxygen Species/metabolism*
;
Apoptosis/drug effects*
;
Male
;
Oxidative Stress/drug effects*
;
MAP Kinase Signaling System/drug effects*
;
Lung/drug effects*
;
Mice
;
Lipopolysaccharides
;
Macrophages, Alveolar/pathology*
;
Inflammation/pathology*
;
Protective Agents/therapeutic use*
6.Dihuang Yinzi Regulates cAMP/PKA/CREB-BDNF to Improve Synaptic Plasticity in APP/PS1 Mice: A Study Based on Brain Metabolomics.
Huan-Ning JIANG ; Bo ZHANG ; Jian ZHANG ; Yan-Yan ZHOU
Chinese journal of integrative medicine 2025;31(11):991-1000
OBJECTIVE:
To explore the mechanism of Dihuang Yinzi (DHYZ) in the treatment of Alzheimer's disease (AD) by integrating metabolomics and experimental verification.
METHODS:
Forty-eight male APP/PS1 mice were divided into model, high- (DHYZ-H), medium- (DHYZ-M), and low-dose DHYZ (DHYZ-L) groups (12 mice per group) according to a random number table. Mice in DHYZ groups were gavaged with DHYZ 6.34, 12.68, and 25.35 g/(kg·d), respectively. Twelve C57BL/6 mice were gavaged with distilled water as the blank group. Metabolomics was used to analyze differential metabolites in the brains of mice. Morris water maze test was used to detect the memory abilities of mice. The hematoxylin-eosin staining and transmission electron microscopy were used to observe the general morphology and ultrastructure of neurons. The enzyme-linked immunosorbent assay was used to detect the levels of superoxide dismutase (SOD), reactive oxygen species (ROS), and amyloid β -protein 1-42 (A β1-42). The real-time quantitative polymerase chain reaction was used to detect the mRNA expressions of density-regulated protein 1 (DRP1), fission 1 (FIS1), mitofusin-1 (MFN1), and optic atrophy protein 1 (OPA1). Western blot was used to detect the protein expressions of cyclic adenosine monophosphate (cAMP), protein kinase A (PKA), cAMP response binding protein (CREB), brain-derived neurotrophic factor (BDNF), synapsin 1 (SYN1), synaptophysin (SYP), and postsynaptic density protein 95 (PSD95).
RESULTS:
A total of 82 differential metabolites were identified in the brains of APP/PS1 mice, among which 7 differential metabolites could be regulated by DHYZ. After DHYZ intervention, the memory abilities of mice significantly increased (P<0.05 or P<0.01), the number of synapses and neurons in the hippocampus increased, and the mitochondrial morphology and structure were relatively intact. The DHYZ groups exhibited a significant reduction in hippocampal ROS and A β1-42 levels, along with a significant elevation in SOD level (P<0.05 or P<0.01). The mRNA expressions of DRP1 and FIS1 were reduced, while the mRNA expressions of MFN1 and OPA1 were increased after DHYZ treatment (P<0.05 or P<0.01). The cAMP/PKA/CREB-BDNF pathway was activated, and the expressions of SYN1, SYP and PSD95 proteins were significantly increased in the DHYZ-H group (P<0.05 or P<0.01).
CONCLUSIONS
DHYZ could improve mitochondrial dynamics and synaptic plasticity in APP/PS1 mice, inhibit oxidative stress, and thereby enhancing learning and memory abilities in APP/PS1 mice. Its mechanism might be related to activation of the cAMP/PKA/CREB-BDNF signaling pathway.
Animals
;
Brain-Derived Neurotrophic Factor/metabolism*
;
Male
;
Cyclic AMP Response Element-Binding Protein/metabolism*
;
Brain/drug effects*
;
Metabolomics
;
Mice, Inbred C57BL
;
Neuronal Plasticity/drug effects*
;
Drugs, Chinese Herbal/therapeutic use*
;
Cyclic AMP-Dependent Protein Kinases/metabolism*
;
Cyclic AMP/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Amyloid beta-Protein Precursor/metabolism*
;
Mice, Transgenic
;
Mice
;
Amyloid beta-Peptides/metabolism*
;
Signal Transduction/drug effects*
;
Alzheimer Disease/drug therapy*
;
Superoxide Dismutase/metabolism*
7.Resveratrol Attenuates Inflammation in Acute Lung Injury through ROS-Triggered TXNIP/NLRP3 Pathway.
Wen-Han HUANG ; Kai-Ying FAN ; Yi-Ting SHENG ; Wan-Ru CAI
Chinese journal of integrative medicine 2025;31(12):1078-1086
OBJECTIVE:
To evaluate the protective effects of resveratrol against acute lung injury (ALI) and investigate the potential mechanisms underlying the reactive oxygen species (ROS)-triggered thioredoxin-interacting protein (TXNIP)/NOD-, LRR- and pyrin domain-containing protein 3 (NLRP3) pathway.
METHODS:
C57BL/6 mice and J774A.1 cells were selected as the research subjects. Thirty Mice were randomly divided into 5 groups of 6 in each group: control with 0.9% saline, 5 mg/kg lipopolysaccharide (LPS) 24 h, 25 mg/kg resveratrol + 5 mg/kg LPS, 100 mg/kg resveratrol + 5 mg/kg LPS, and 4 mg/kg NLRP3 inhibitor CY-09 + 5 mg/kg LPS. For cell stimulation, cells were pretreated with 5 and 20 µmol/L resveratrol for 2 h, and stimulated with or without 1 µg/mL LPS and 3 mmol/L ATP for 2 h. The antioxidant N-acetyl-L-cysteine (NAC, 2 µmol/L) was used as the positive control group. Hematoxylin and eosin staining was used to evaluate the degree of lung LPS-induced tissue damage, and enzyme-linked immunosorbent assay was used to evaluate the contents of interleukin-1 β (IL-1 β) and IL-18 in the serum and cell supernatant. ROS and malondialdehyde (MDA) levels in the lung tissue were detected using the corresponding kits. Western blotting was used to detect the expressions of TXNIP, high-mobility group box 1 (HMGB1), NLRP3, as well as cysteine-aspartic acid protease 1 (caspase-1) and gasdermin D (GSDMD) along with their cleaved forms in lung tissue. Additionally, reverse transcription quantitative polymerase chain reaction was performed to analyze the expression of related inflammatory cytokines. ROS content was detected using flow cytometry and confocal laser microscopy. Mitochondrial morphological changes were observed using transmission electron microscopy, and HMGB1 expression was detected using immunofluorescence.
RESULTS:
Resveratrol significantly alleviated LPS-induced lung damage with reduced inflammation, interstitial edema, and leukocyte infiltration (P<0.01). It also decreased serum levels of IL-1 β and IL-18 (P<0.05), while downregulating the expressions of NLRP3, IL-6, and other inflammatory markers at both the protein and mRNA levels (P<0.05). Notably, the higher dose (100 mg/kg) demonstrated a better effect than the lower dose (25 mg/kg). In macrophages, resveratrol reduced IL-1 β and IL-18 following LPS and ATP stimulation, suppressed HMGB1 translocation, and inhibited formation and activation of the NLRP3 inflammasome (P<0.05 or P<0.01). These anti-inflammatory effects were mediated through the suppression ROS accumulation (P<0.01) and mitochondrial dysfunction. Transmission electron microscopy revealed that resveratrol preserved mitochondrial structure, preventing the mitochondrial damage seen in LPS-treated groups (P<0.01). The expressions of cleaved caspase-1, cleaved GSDMD, and cytoplasmic HMGB1 were all reduced following resveratrol treatment (P<0.01). Moreover, resveratrol inhibited dissociation of TXNIP from thioredoxin, blocking subsequent activation of NLRP3 and downstream inflammatory cytokines (P<0.01). Similarly, the higher concentration of resveratrol (20 µ mol/L) exhibited superior efficacy in vitro.
CONCLUSION
Resveratrol can reduce the inflammatory response following ALI and inhibit the activation of NLRP3 inflammasome and the level of HMGB1 in the cytoplasm by inhibiting ROS overproduction.
Acute Lung Injury/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Animals
;
Resveratrol/pharmacology*
;
Reactive Oxygen Species/metabolism*
;
Inflammation/complications*
;
Mice, Inbred C57BL
;
Carrier Proteins/metabolism*
;
Signal Transduction/drug effects*
;
Lipopolysaccharides
;
Thioredoxins/metabolism*
;
Mice
;
Lung/drug effects*
;
Male
;
Cell Line
;
Interleukin-1beta/metabolism*
;
Cell Cycle Proteins
;
Stilbenes/therapeutic use*
8.Synergistic effect of β-thujaplicin and tigecycline against tet(X4)-positive Escherichia coli in vitro.
Muchen ZHANG ; Huangwei SONG ; Zhiyu ZOU ; Siyuan YANG ; Hui LI ; Chongshan DAI ; Dejun LIU ; Bing SHAO ; Congming WU ; Jianzhong SHEN ; Yang WANG
Chinese Journal of Biotechnology 2023;39(4):1621-1632
The widespread of tigecycline resistance gene tet(X4) has a serious impact on the clinical efficacy of tigecycline. The development of effective antibiotic adjuvants to combat the looming tigecycline resistance is needed. The synergistic activity between the natural compound β-thujaplicin and tigecycline in vitro was determined by the checkerboard broth microdilution assay and time-dependent killing curve. The mechanism underlining the synergistic effect between β-thujaplicin and tigecycline against tet(X4)-positive Escherichia coli was investigated by determining cell membrane permeability, bacterial intracellular reactive oxygen species (ROS) content, iron content, and tigecycline content. β-thujaplicin exhibited potentiation effect on tigecycline against tet(X4)-positive E. coli in vitro, and presented no significant hemolysis and cytotoxicity within the range of antibacterial concentrations. Mechanistic studies demonstrated that β-thujaplicin significantly increased the permeability of bacterial cell membranes, chelated bacterial intracellular iron, disrupted the iron homeostasis and significantly increased intracellular ROS level. The synergistic effect of β-thujaplicin and tigecycline was identified to be related to interfere with bacterial iron metabolism and facilitate bacterial cell membrane permeability. Our studies provided theoretical and practical data for the application of combined β-thujaplicin with tigecycline in the treatment of tet(X4)-positive E. coli infection.
Humans
;
Tigecycline/pharmacology*
;
Escherichia coli/metabolism*
;
Reactive Oxygen Species/therapeutic use*
;
Plasmids
;
Anti-Bacterial Agents/metabolism*
;
Escherichia coli Infections/microbiology*
;
Bacteria/genetics*
;
Microbial Sensitivity Tests
9.Protective effect of melatonin against oxygen-induced retinopathy: a study based on the HMGB1/NF-κB/NLRP3 axis.
Fang-Fang CHU ; Yan-Song ZHAO ; Yu-Ze ZHAO ; Chen BAI ; Pei-Lun XIAO ; Xiao-Li WANG ; Shu-Na YU ; Ji-Ying JIANG
Chinese Journal of Contemporary Pediatrics 2023;25(6):645-652
OBJECTIVES:
To study the protective effect of melatonin (Mel) against oxygen-induced retinopathy (OIR) in neonatal mice and the role of the HMGB1/NF-κB/NLRP3 axis.
METHODS:
Neonatal C57BL/6J mice, aged 7 days, were randomly divided into a control group, a model group (OIR group), and a Mel treatment group (OIR+Mel group), with 9 mice in each group. The hyperoxia induction method was used to establish a model of OIR. Hematoxylin and eosin staining and retinal flat-mount preparation were used to observe retinal structure and neovascularization. Immunofluorescent staining was used to measure the expression of proteins and inflammatory factors associated with the HMGB1/NF-κB/NLRP3 axis and lymphocyte antigen 6G. Colorimetry was used to measure the activity of myeloperoxidase.
RESULTS:
The OIR group had destruction of retinal structure with a large perfusion-free area and neovascularization, while the OIR+Mel group had improvement in destruction of retinal structure with reductions in neovascularization and perfusion-free area. Compared with the control group, the OIR group had significant increases in the expression of proteins and inflammatory factors associated with the HMGB1/NF-κB/NLRP3 axis, the expression of lymphocyte antigen 6G, and the activity of myeloperoxidase (P<0.05). Compared with the OIR group, the OIR+Mel group had significant reductions in the above indices (P<0.05). Compared with the control group, the OIR group had significant reductions in the expression of melatonin receptors in the retina (P<0.05). Compared with the OIR group, the OIR+Mel group had significant increases in the expression of melatonin receptors (P<0.05).
CONCLUSIONS
Mel can alleviate OIR-induced retinal damage in neonatal mice by inhibiting the HMGB1/NF-κB/NLRP3 axis and may exert an effect through the melatonin receptor pathway.
Animals
;
Mice
;
HMGB1 Protein
;
Melatonin/therapeutic use*
;
Mice, Inbred C57BL
;
NF-kappa B
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Oxygen/adverse effects*
;
Peroxidase
;
Receptors, Melatonin
;
Retinal Diseases/drug therapy*
10.Cigarette Smoke Induces Gefitinib Resistance in NSCLC Cells via ROS/Sirt3/SOD2 Pathway.
Yawan ZI ; Ke LIAO ; Hong CHEN
Chinese Journal of Lung Cancer 2023;26(4):245-256
BACKGROUND:
Epidermal growth factor receptor (EGFR) gene mutations are the most common driver mutations in non-small cell lung cancer (NSCLC). To prolong the survival of the patients, EGFR tyrosine kinase inhibitors (TKIs) resistance in NSCLC is a major challenge that needs to be addressed urgently, and this study focuses on investigating the mechanism of cigarette smoke (CS) induced Gefitinib resistance in NSCLC.
METHODS:
PC-9 and A549 cells were cultured in vitro and treated with 1 µmol/L Gefitinib for 4 h and 10% cigarette smoke extract (CSE) for 48 h. Western blot was used to detect Sirtuin 3 (Sirt3) and superoxide dismutase 2 (SOD2) protein expressions; DCFH-DA probe was used to detect intracellular reactive oxygen species (ROS); CCK-8 kit was used to detect cell activity, and EdU was used to detect cell proliferation ability. Sirt3 overexpression plasmid (OV-Sirt3) was transfected in PC-9 and A549 cells and treated with 1 µmol/L Gefitinib for 4 h and 10% CSE for 48 h after N-acetylcysteine (NAC) action. The expressions of Sirt3 and SOD2 were detected by Western blot; the ROS level in the cells was detected by DCFH-DA probe, and the cell activity was detected by CCK-8.
RESULTS:
CSE induced an increase in the 50% inhibitory concentration (IC50) of both PC-9 and A549 cells to Gefitinib (P<0.01) and enhanced the proliferation of PC-9 and A549 cells, suggesting that CS induced Gefitinib resistance in NSCLC. ROS was involved in CSE-induced Gefitinib resistance (P<0.05). CSE induced low expressions of Sirt3 and SOD2 (P<0.01), and Sirt3/SOD2 was associated with poor prognosis in lung cancer patients (P<0.05). OV-Sirt3 in PC-9 and A549 cells reversed CSE-induced Gefitinib resistance (P<0.05) and significantly reduced ROS production. NAC reversed CSE-induced Gefitinib resistance in PC-9 and A549 cells (P<0.05).
CONCLUSIONS
The ROS/Sirt3/SOD2 pathway is involved in CS-induced Gefitinib resistance in NSCLC.
Humans
;
Gefitinib/therapeutic use*
;
Carcinoma, Non-Small-Cell Lung/metabolism*
;
Sirtuin 3/therapeutic use*
;
Lung Neoplasms/metabolism*
;
Reactive Oxygen Species/therapeutic use*
;
Antineoplastic Agents/therapeutic use*
;
Cigarette Smoking
;
Sincalide/therapeutic use*
;
ErbB Receptors/metabolism*
;
Drug Resistance, Neoplasm/genetics*
;
Cell Line, Tumor

Result Analysis
Print
Save
E-mail