1.Effects of light intensity on growth and content of active components of Uncaria rhynchophyll.
Jian-Jian WANG ; La-la JI ; Xiao-Hong DENG ; Li-Tang LYU ; Li-Fei YU ; Ping GUAN
China Journal of Chinese Materia Medica 2019;44(23):5118-5123
The aim of this study was to study the effects of different light intensity on the growth,biomass accumulation and distribution,chlorophyll content and effective components of Uncaria rhynchophylla seedlings,and explore the suitable light intensity conditions for artificial cultivation of U. rhynchophylla seedlings. Three-year-old U. rhynchophylla seedlings were used as experimental materials. Four light intensity levels( 100%,70%-75%,30%-35%,5%-10%) were set up with different layers of black shading net. With the decrease of light intensity,the results showed that the plant height,basal diameter and biomass( root,stem,leaf and hook) of U.rhynchophylla seedlings exhibited the trend of " increase-decrease". Under 70%-75% light intensity,the plant height,basal diameter,biomass( root,stem,leaf,hook) of U. rhynchophylla seedlings were significantly higher than those of other treatments( P< 0. 05);under 5%-10% light intensity,the plant height,basal diameter and biomass( root,hook) of U. rhynchophylla seedlings were significantly lower than those of other treatments( P<0. 05). With the decrease of light intensity,the chlorophyll content of U. rhynchophylla seedlings increased gradually: under 100% light intensity,the chlorophyll content of U. rhynchophylla seedlings were the smallest,while under 100% light intensity,its chlorophyll content was the highest. With the decrease of light intensity,the contents of rhynchophylline and isorhynchophylline in different organs of U. rhynchophylla seedlings varied: under 30%-35% light intensity,the contents of rhynchophylline and isorhynchophylline in hooks and rhynchophylline content in stems were the highest; under 5%-10% light intensity,the contents of rhynchophylline and isorhynchophylline in leaves and stems of U. rhynchophylla were the highest. In conclusion,70%-75% light intensity is suitable for seedling growth and biomass accumulation,and 30%-35% light intensity is suitable for the accumulation of effective components in U. rhynchophylla seedlings.
Biomass
;
Chlorophyll/analysis*
;
Light
;
Oxindoles/analysis*
;
Phytochemicals/analysis*
;
Seedlings/radiation effects*
;
Uncaria/radiation effects*
2.Antioxidant mechanism of gastrodin combined with isorhynchophylline in inhibiting MPP~+-induced apoptosis of PC12 cells.
Xu LI ; Tian-Jiao XU ; Li-Kun LIU ; Miao-Xian DONG
China Journal of Chinese Materia Medica 2021;46(2):420-425
Gastrodiae Rhizoma-Uncariae Ramulus cum Uncis is the most frequently used herbal pair in the treatment of Parkinson's disease(PD). Gastrodin and isorhynchophylline are important components of Gastrodiae Rhizoma-Uncariae Ramulus cum Uncis herb pair with anti-Parkinson mechanism. This study aimed to investigate the effect of gastrodin combined with isorhynchophylline on 1-methyl-4-phenylpyridinium(MPP~+)-induced apoptosis of PC12 cells and their antioxidant mechanism. The leakage of lactate dehydrogenase(LDH) from cells to media was analyzed by spectrophotometry. Apoptotic cells were labeled with Annexin V-fluorescein isothiocyanate(FITC) and propidium iodide(PI) and analyzed by flow cytometry. The cell cycle was analyzed using propidium iodide(PI) staining. Lipid peroxidation(LPO) level was analyzed by spectrophotometry. The mRNA expression of caspase-3 was examined by Real-time RT-PCR. The protein expressions of heme oxygenase 1(HO-1) and NADPH: quinoneoxidore-ductase 1(NQO-1) were determined by Western blot. Gastrodin combined with isorhynchophylline reduced the percentage of Annexin V-positive cells and cell cycle arrest in MPP~+-induced PC12 cells. Gastrodin combined with isorhynchophylline down-regulated the mRNA expression of caspase-3, up-regulated the protein expressions of HO-1 and NQO-1, and reduced LPO content in MPP~+-induced PC12 cells. PD98059, LY294002 or LiCl could partially reverse these changes pretreated with gastrodin combined with isorhynchophylline, suggesting that gastrodin combined with isorhynchophylline inhibited MPP~+-induced apoptosis of PC12 cells and oxidative stress through ERK1/2 and PI3 K/GSK-3β signal pathways. Our experiments showed that gastrodin combined with isorhynchophylline could down-re-gulate the mRNA expression of caspase-3 and up-regulate the protein expressions of HO-1 and NQO-1, so as to reduce oxidative stress and inhibit apoptosis.
1-Methyl-4-phenylpyridinium/toxicity*
;
Animals
;
Antioxidants
;
Apoptosis
;
Benzyl Alcohols
;
Cell Survival
;
Glucosides
;
Glycogen Synthase Kinase 3 beta
;
Oxindoles
;
PC12 Cells
;
Rats