1.Astragali Radix-Curcumae Rhizoma drug pair inhibits growth of osteosarcoma by affecting cell adhesion and angiogenesis via PI3K/Akt/HIF-1α pathway.
Dao-Tong YUAN ; Zhi-Meng ZHANG ; Rui GONG ; Xi-Min JIN ; Can-Ran WANG ; Jie ZHAO
China Journal of Chinese Materia Medica 2025;50(8):2217-2228
This study aims to investigate the optimal ratio of Astragali Radix-Curcumae Rhizoma(AC) for inhibiting the proliferation of 143B osteosarcoma cells, and to investigate the mechanism by which AC inhibits osteosarcoma growth and metastasis through angiogenesis and cell adhesion mediated by the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt)/hypoxia inducible factor-1α(HIF-1α) pathway. A subcutaneous 143B tumor-bearing nude mouse model was successfully established and randomly divided into the model group, and the AC 1∶1, 2∶1, and 4∶1 groups. Body weight, tumor volume, and tumor weight were recorded. Real-time quantitative polymerase chain reaction(RT-qPCR) and Western blot were used to detect the mRNA and protein expression levels of PI3K, Akt, phosphorylated Akt(p-Akt), HIF-1α, vascular endothelial growth factor A(VEGFA), transforming growth factor-β1(TGF-β1), epithelial cadherin(E-cadherin), neural cadherin(N-cadherin), vimentin, matrix metalloproteinase 2(MMP2), matrix metalloproteinase 9(MMP9), B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), and caspase-3 in the hypoxic core region of the tumor tissue. A cell hypoxia model was established, and the effects of AC-medicated serum(model group, AC 1∶1, 2∶1, and 4∶1 groups) on angiogenesis, proliferation, adhesion, invasion, and migration of 143B osteosarcoma cells were examined through CCK-8, flow cytometry, Transwell assay, cell adhesion assay, and HUVEC tube formation assay. The results showed that compared with the model group, the tumor weight and volume were smallest in the 2∶1 group. The expression levels of PI3K, Akt, p-Akt, HIF-1α, VEGFA, and TGF-β1 were significantly decreased, and the protein expression of E-cadherin was significantly increased, while the protein expression of N-cadherin, vimentin, MMP2, and MMP9 was significantly decreased. Additionally, the protein expression of Bax and caspase-3 was significantly increased, and Bcl-2 protein expression was significantly decreased. In vitro experiments showed that after intervention with AC-medicated serum at a 2∶1 ratio, the cell activity, adhesion, invasion, and migration of 143B cells were significantly reduced, apoptosis was significantly increased, and HUVEC tube formation was significantly decreased. In conclusion, the 2∶1 ratio of AC showed the most effective inhibition of 143B cell growth. AC can inhibit the growth and metastasis of osteosarcoma 143B cells by regulating the PI3K/Akt/HIF-1α signaling pathway, inhibiting angiogenesis and reducing cell adhesion, invasion, and migration.
Osteosarcoma/pathology*
;
Animals
;
Proto-Oncogene Proteins c-akt/genetics*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Humans
;
Mice
;
Cell Adhesion/drug effects*
;
Cell Proliferation/drug effects*
;
Neovascularization, Pathologic/metabolism*
;
Drugs, Chinese Herbal/administration & dosage*
;
Phosphatidylinositol 3-Kinases/genetics*
;
Cell Line, Tumor
;
Mice, Nude
;
Signal Transduction/drug effects*
;
Astragalus Plant/chemistry*
;
Bone Neoplasms/physiopathology*
;
Male
;
Rhizome/chemistry*
;
Mice, Inbred BALB C
;
Angiogenesis
2.Effects of miR-143 on the migration and invasion of osteosarcoma cells by regulating MMP-13 expression.
Bin LI ; Zhan-Peng LI ; Zhen-Gang LIAN
China Journal of Orthopaedics and Traumatology 2023;36(11):1075-1080
OBJECTIVE:
To explore the effect of miR-143 regulating matrix metalloproteinase(MMP)-13 expression on migration and invasion of osteosarcoma cells.
METHODS:
The mouse osteosarcoma cell line 143B cells were cultured in 96-well plates, and blank group, negative group, positive group, and intervention group were set up. Then, the blank group did no treatment 50 μg miR-143 mimic was added to positive group, negative group added equal mimic NC (control sequence of miR-143 mimic), the intervention group was added 50 μg miR-143 mimic and 10 μg MMP-13 protein, all groups continued to culture for 3 to 6 hours, and finally the serum was aspirated to treat for half an hour. The protein expressions of miR-143 and MMP-13 in each group were measured by fluorescence quantitative PCR experiment and Western blot experiment, respectively, and the invasion and migration abilities of cells were measured by Transwell and scratch experiments.
RESULTS:
The expression of MMP-13 protein in the positive group and the intervention group was significantly lower than that in the blank group, and the positive group was lower than the intervention group (P<0.05);The mean numbers of invasive cells in blank group, negative group, positive group and intervention group were (1 000.01±44.77), (959.25±46.32), (245.04±4.33), (634.06±33.78) cells/field, respectively;the scratch healing rate of the positive group and the intervention group was significantly lower than that of the blank group, and the positive group was lower than the intervention group (P<0.05).
CONCLUSION
MMP-13 is a target of miR-143, which can reduce the migration and invasion ability of osteosarcoma cells by inhibiting the expression of MMP-13.
Osteosarcoma/pathology*
;
MicroRNAs/genetics*
;
Matrix Metalloproteinase 13/genetics*
;
Neoplasm Invasiveness
;
Animals
;
Mice
;
Cell Line, Tumor
;
Cell Movement
3.Role of let-7 family in the invasion and metastasis of osteosarcoma.
Tong XIAO ; Xuan YANG ; Nanshan ZHONG ; Zhiwen LUO ; Jiaming LIU
Chinese Medical Journal 2023;136(1):120-122
4.Prognostic value and mechanism of long non-coding RNA DLEU1 in osteosarcoma.
Jing-Jing ZHANG ; Ping YANG ; Xiao-Qiang SHANG
China Journal of Orthopaedics and Traumatology 2023;36(6):559-564
OBJECTIVE:
To investigate the prognostic value and mechanism of long non-coding RNA DLEU1(LncRNA DLEU1) in osteosarcoma.
METHODS:
The tissue samples and clinical data of 86 patients with osteosarcoma treated by orthopaedic surgery in our hospital from January 2012 to December 2014 were retrospectively collected. The expression of LncRNA DLEU1 in pathological tissues was detected by qRT-PCR, then the patients were divided into high and low expression of LncRNA DLEU1 groups. Osteosarcoma cell line HOS was divided into two groups, down-regulated expression group (si-DLEU1 group) and negative control group (si-NC group). LncRNA DLEU1 siRNA and negative control sequence were transfected by Lipofectamine 3000. Chi-square test was used to analyze the relationship between the expression of LncRNA DLEU1 and the clinicopathological factors of osteosarcoma. Kaplan-Meier method was used to compare the difference of the overall survival rate of osteosarcoma patients between the high and low expression groups of LncRNA DLEU1. The risk factors affecting the overall survival rate of osteosarcoma were analyzed by single factor and multifactor analysis. The number of invasive cells in the two groups was determined and compared by Transwell assay.
RESULTS:
The expression of LncRNA DLEU1 in osteosarcoma tissue was higher than that in adjacent tissues (P<0.001). The expression of LncRNA DLEU1 in human osteosarcoma cell lines (MG-63, U-2 OS, and HOS) was significantly higher than that in human osteoblast line hFOB 1.19 (P<0.001). The expression of LncRNA DLEU1 was significantly correlated with Enneking stage (P<0.001), distant metastasis (P=0.016), and histological grade (P=0.028). The 1-year overall survival rate of the LncRNA DLEU1 high expression group was significantly higher than that of the low expression group (90.7% vs 60.5%, P<0.001). The 5-year overall survival rate of the LncRNA DLEU1 high expression group was significantly higher than that of the low expression group (32.6% vs 11.6%, P<0.001). Univariate analysis showed that Enneking stage (P<0.001), tumor size (P=0.043), distant metastasis (P<0.001), histological grade (P<0.001), and expression of LncRNA DLEU1 (P<0.001) were risk factors for overall survival of osteosarcoma patients. Multivariate analysis showed that high expression of LncRNA DLEU1 [HR=1.948, 95% CI(1.141, 3.641), P=0.012] and distant metastasis[HR=4.108, 95% CI(2.169, 7.780), P<0.001] were independent risk factors for overall survival of osteosarcoma patients. The number of invasive cells in si-DLEU1 group was significantly lesser than that in si-NC group(139±13 vs 357±31, P<0.001).
CONCLUSION
High expression of LncRNA DLEU1 is a molecular marker affecting the prognosis of osteosarcoma patients. Downregulation of LncRNA DLEU1 can inhibit the invasion of osteosarcoma cells.
Humans
;
Prognosis
;
RNA, Long Noncoding/metabolism*
;
Retrospective Studies
;
Cell Proliferation/genetics*
;
Cell Line, Tumor
;
Osteosarcoma/genetics*
;
Bone Neoplasms/pathology*
5.Bioinformatics analysis of differently expressed genes in osteoblastic sarcoma and screening of key genes.
Rong Kai SHEN ; Zhen HUANG ; Xia ZHU ; Jian Hua LIN
Chinese Journal of Oncology 2022;44(2):147-154
Objective: To screen the different expressed genes between osteosarcoma and normal osteoblasts, and find the key genes for the occurrence and development of osteosarcoma. Methods: The gene expression dataset GSE33382 of normal osteoblasts and osteosarcoma was obtained from Gene Expression Omnibus (GEO) database. The different expressed genes between normal osteoblasts and osteosarcoma were screened by limma package of R language, and the different expressed genes were analyzed by Kyoto encyclopedia of genes and genomes (KEGG) pathway enrichment analysis. The protein interaction network was constructed by the String database, and the network modules in the interaction network were screened by the molecular complex detection (MCODE) plug-in of Cytoscape software. The different expressed genes contained in the first three main modules screened by MCODE were analyzed by gene ontology (GO) using the BiNGO module of Cytoscape software. The MCC algorithm was used to screen the top 10 key genes in the protein interaction network. The gene expression and survival dataset GSE39055 of osteosarcoma was obtained from GEO database, and the survival analysis was performed by Kaplan-Meier method. The data of 48 patients with osteosarcoma treated in the First Affiliated Hospital of Fujian Medical University from January 2005 to December 2015 were selected for verification. The expression of STC2 protein in osteosarcoma was detected by immunohistochemical method, and the survival analysis was carried out combined with the clinical data of the patients. Results: A total of 874 different expressed genes were identified from GSE33382 dataset, including 402 down-regulated genes and 472 up-regulated genes. KEGG enrichment analysis showed that different expressed genes were mainly related to p53 signal pathway, glutathione metabolism, extracellular matrix receptor interaction, cell adhesion molecules, folate tolerance, and cell senescence. The top 10 key genes in the interaction network were GAS6, IL6, RCN1, MXRA8, STC2, EVA1A, PNPLA2, CYR61, SPARCL1 and FSTL3. STC2 was related to the survival rate of patients with osteosarcoma (P<0.05). The results showed that the expression of STC2 protein was related to tumor size and Enneking stage in 48 cases of osteosarcoma. The median survival time of 25 cases with STC2 high expression was 21.4 months, and that of 23 cases with STC2 low expression was 65.4 months. The survival rate of patients with high expression of STC2 was lower than that of patients with low expression of STC2 (P<0.05). Conclusions: Bioinformatics analysis can effectively screen the different expressed genes between osteosarcoma and normal osteoblasts. STC2 is one of the important predictors for the prognosis of osteosarcoma.
Bone Neoplasms/pathology*
;
Computational Biology/methods*
;
Follistatin-Related Proteins/genetics*
;
Gene Expression Profiling/methods*
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Osteosarcoma/pathology*
6.Bioinformatics-based identification of key genes CDC5L and related pathways in osteosarcoma and Ewing's sarcoma.
Na FENG ; Wen-Xia SONG ; Li-Ping SHAO ; Yu-Hang GAO ; Cheng-Wu ZHAO
China Journal of Orthopaedics and Traumatology 2022;35(3):276-280
OBJECTIVE:
Osteosarcoma(OS) and Ewing's sarcoma (EWS) are the two most common primary malignant bone tumors in children. The aim of the study was to identify key genes in OS and EWS and investigate their potential pathways.
METHODS:
Expression profiling (GSE16088 and GSE45544) were obtained from GEO DataSets. Differentially expressed genes were identified using GEO2R and key genes involved in the occurrence of both OS and EWS were selected using venn diagram. Gene ontology and pathway enrichment analyses were performed for the ensembl. Protein-protein interaction (PPI) networks were established by STRING. Further, UCSC was used to predict the transcription factors of the cell division cycke 5-like(CDC5L) gene, and GEPIA was used to analyze the correlation between the transcription factors and the CDC5L gene.
RESULTS:
The results showed that CDC5L gene was the key gene involved in the pathogenesis of OS and EWS. The gene is mainly involved in mitosis, and is related to RNA metabolism, processing of capped intron-containing pre-mRNA, mRNA and pre-mRNA splicing.
CONCLUSION
CDC5L, as a key gene, plays a role in development of OS and EWS, which may be reliable targets for diagnosis and treatment of these primary malignant tumors.
Bone Neoplasms/pathology*
;
Cell Cycle Proteins/genetics*
;
Child
;
Computational Biology
;
Gene Expression Profiling
;
Humans
;
Osteosarcoma/genetics*
;
RNA-Binding Proteins/genetics*
;
Sarcoma, Ewing/genetics*
7.CircRNA circTNPO1 promotes the proliferation and metastasis of osteosarcoma by sponging miR-338-3p.
Jian Hong LU ; Xiao Wen HUANG ; Guo Qiang ZHANG ; Yan MA ; Jun Xin CHEN
Chinese Journal of Oncology 2022;44(9):968-974
Objective: To explore the effects of circTNPO1 on the proliferation and metastasis of osteosarcoma (OS) by sponging miR-338-3p. Methods: The expression of circTNPO1 on osteoblasts and multiple OS cell lines were detected by qRT-PCR. CircTNPO1 stable knockdown 143B cell line was constructed by sh-circTNPO1. Cell count kit 8 (CCK-8) assay and wound healing assay were applied to evaluate the proliferation and metastasis of this cell. Luciferase reporter assay was used to explore the binding between circTNPO1 and miR-338-3p. In xenograft tumor model, miR-338-3p inhibitor or its control was injected into the circTNPO1 knockdown tumors. The weight and size of the tumors were evaluated and Ki-67 expression was detected by immunohistochemistry. Results: The RNA expression of circTNPO1 in OS cell lines U2OS, HOS, MG63, 143B, ZOS and ZOSM were 2.73±0.27, 3.18±0.54, 4.33±0.52, 5.75±0.65, 4.50±0.49 and 3.96±0.35, respectively, higher than 1.00±0.09 in hFOB1.19 (P<0.001). CCK-8 assay revealed that after 48 h and 72 h, the absorbance of sh-circTNPO1 #1 was 0.81±0.05 and 1.09±0.06, while sh-circTNPO1 #2 143B cells was 0.84±0.04 and 1.2±0.04, which were sharply reduced compared with the control (1.00±0.06 and 1.49±0.06, P<0.001); after 48 h and 72 h, the absorbance of 143B cells transfected with circTNPO1 #1 and miR-338-3p (0.92±0.06 and 1.32±0.07) were higher than those of cells transfected with sh-circTNPO1 cells and miR NC (0.92±0.06 and 1.32±0.07, P<0.050). Wound healing assay demonstrated that the 24 hour-migration rates of sh-circTNPO1 #1 and sh-circTNPO1 #2 cells were (24.43±2.15)% and (39.70±4.20)% respectively, which were significantly lower than that of the control [(56.51±3.27)%, P<0.010]; the migration rates of sh-circTNPO1 #1+ miR NC and sh-circTNPO1 #1+ miR-338-3p inhibitor were (26.70±2.21)% and (46.10±5.71)%, with a significant difference (P<0.005). In xenograft tumor model, the weight and size of tumors in control, sh-circTNPO1 #1+ miR NC and sh-circTNPO1 #1+ miR-338-3p inhibitor mice were (458.80±158.10) mg, (262.50±82.09) mg, (395.40±137.60) mg and (593.00±228.40) mm(2,) (203.30±144.20) mm(2,) (488.60±208.60) mm(2,) respectively. Compared with control, sh-circTNPO1 tumors were significantly smaller (P<0.01). Injection with miR-338-3p inhibitor significantly reversed both the weight and size of tumors (P<0.05). Conclusion: CircTNPO1 promotes the proliferation and metastasis of OS by sponging miR-338-3p, which could be a new target for OS treatments.
Animals
;
Bone Neoplasms/pathology*
;
Cell Line, Tumor
;
Cell Movement
;
Cell Proliferation/genetics*
;
Gene Expression Regulation, Neoplastic
;
Humans
;
Ki-67 Antigen/metabolism*
;
Mice
;
MicroRNAs/metabolism*
;
Osteosarcoma/secondary*
;
RNA, Circular/metabolism*
;
Sincalide/metabolism*
8.Reversal of multidrug resistance by icaritin in doxorubicin-resistant human osteosarcoma cells.
Zhen-Dong WANG ; Rui-Zhi WANG ; Yuan-Zheng XIA ; Ling-Yi KONG ; Lei YANG
Chinese Journal of Natural Medicines (English Ed.) 2018;16(1):20-28
Multidrug resistance (MDR) is one of the major obstacles in cancer chemotherapy. Our previous study has shown that icariin could reverse MDR in MG-63 doxorubicin-resistant (MG-63/DOX) cells. It is reported that icariin is usually metabolized to icariside II and icaritin. Herein, we investigated the effects of icariin, icariside II, and icaritin (ICT) on reversing MDR in MG-63/DOX cells. Among these compounds, ICT exhibited strongest effect and showed no obvious cytotoxicity effect on both MG-63 and MG-63/DOX cells ranging from 1 to 10 μmol·L. Furthermore, ICT increased accumulation of rhodamine 123 and 6-carboxyfluorescein diacetate and enhanced DOX-induced apoptosis in MG-63/DOX cells in a dose-dependent manner. Further studies demonstrated that ICT decreased the mRNA and protein levels of multidrug resistance protein 1 (MDR1) and multidrug resistance-associated protein 1 (MRP1). We also verified that blockade of STAT3 phosphorylation was involved in the reversal effect of multidrug resistance in MG-63/DOX cells. Taken together, these results indicated that ICT may be a potential candidate in chemotherapy for osteosarcoma.
ATP Binding Cassette Transporter, Subfamily B
;
drug effects
;
genetics
;
metabolism
;
Antineoplastic Agents
;
pharmacology
;
Apoptosis
;
drug effects
;
Cell Line, Tumor
;
Cell Survival
;
drug effects
;
Dose-Response Relationship, Drug
;
Doxorubicin
;
metabolism
;
pharmacology
;
toxicity
;
Drug Resistance, Multiple
;
drug effects
;
Drug Resistance, Neoplasm
;
drug effects
;
Flavonoids
;
pharmacology
;
Gene Expression Regulation, Neoplastic
;
drug effects
;
Humans
;
Multidrug Resistance-Associated Proteins
;
drug effects
;
genetics
;
metabolism
;
Osteosarcoma
;
drug therapy
;
metabolism
;
pathology
;
Phosphorylation
;
drug effects
;
Rhodamine 123
;
metabolism
;
STAT3 Transcription Factor
;
antagonists & inhibitors
;
metabolism
;
Triterpenes
;
pharmacology
9.Long Non-Coding RNA TUG1 Promotes Proliferation and Inhibits Apoptosis of Osteosarcoma Cells by Sponging miR-132-3p and Upregulating SOX4 Expression.
Gang LI ; Keyu LIU ; Xinhui DU
Yonsei Medical Journal 2018;59(2):226-235
PURPOSE: Long non-coding RNA taurine upregulated gene 1 (TUG1) is reported to be a vital regulator of the progression of various cancers. This study aimed to explore the exact roles and molecular mechanisms of TUG1 in osteosarcoma (OS) development. MATERIALS AND METHODS: Real-time quantitative PCR was applied to detect the expressions of TUG1 and microRNA-132-3p (miR-132-3p) in OS tissues and cells. Western blot was performed to measure protein levels of sex determining region Y-box 4 (SOX4). Cell viability was assessed using XTT assay. Cell apoptosis was evaluated using flow cytometry and caspase-3 activity detection assays. Bioinformatics analysis and luciferase reporter experiments were employed to confirm relationships among TUG1, miR-132-3p, and SOX4. RESULTS: TUG1 was highly expressed in human OS tissues, OS cell lines, and primary OS cells. TUG1 knockdown hindered proliferation and induced apoptosis in human OS cell lines and primary OS cells. Moreover, TUG1 inhibited miR-132-3p expression by direct interaction, and introduction of miR-132-3p inhibitor partly abrogated the effect of TUG1 knockdown on the proliferation and apoptosis of OS cells. Furthermore, SOX4 was validated as a target of miR-132-3p. Further functional analyses revealed that miR-132-3p inhibited proliferation and induced apoptosis of OS cells, while this effect was greatly abated following SOX4 overexpression. Moreover, TUG1 knockdown suppressed proliferation and promoted apoptosis by upregulating miR-132-3p and downregulating SOX4 in primary OS cells. CONCLUSION: TUG1 facilitated proliferation and suppressed apoptosis by regulating the miR-132-3p/SOX4 axis in human OS cell lines and primary OS cells. This finding provides a potential target for OS therapy.
Apoptosis/*genetics
;
Biomarkers, Tumor
;
Bone Neoplasms/genetics/metabolism/*pathology
;
Cell Line, Tumor
;
Cell Proliferation
;
Gene Expression Regulation, Neoplastic/genetics
;
Gene Knockdown Techniques
;
Humans
;
MicroRNAs/*genetics/metabolism
;
Osteosarcoma/genetics/metabolism/*pathology
;
RNA, Long Noncoding/*genetics/metabolism
;
Real-Time Polymerase Chain Reaction
;
Reverse Transcriptase Polymerase Chain Reaction
;
SOXC Transcription Factors/genetics/*metabolism
;
Transcriptional Activation
;
Tumor Cells, Cultured
;
Up-Regulation
10.Over-expression of Sox4 and β-catenin is associated with a less favorable prognosis of osteosarcoma.
Zheng-Qi BAO ; Chang-chun ZHANG ; Yu-zhou XIAO ; Jian-sheng ZHOU ; Yi-sheng TAO ; Da-min CHAI
Journal of Huazhong University of Science and Technology (Medical Sciences) 2016;36(2):193-199
The purpose of this study was to examine the association of the expression of Sox4 and β-catenin with the prognosis of osteosarcoma. A total of 108 cases of conventional osteosarcoma were involved in this study and 28 cases of osteochondroma served as controls. The expression of Sox4 and β-catenin was detected by using immunohistochemical staining and Western blotting. The results showed that Sox4 and β-catenin were over-expressed in 67 (62.03%) and 62 (57.41%) of 108 osteosarcoma cases, while in only 3 (10.71%) and 5 (17.86%) of 28 controls, respectively (P<0.05 for all). The expression of Sox4 and β-catenin was associated with the distant metastasis, pathological grade and Enneking stage of patients with osteosarcoma (P<0.05 for all). The mean overall survival time and the 5-year-survival rate in osteosarcoma patients with Sox4 and β-catenin over-expressed were significantly reduced as compared with those in Sox4 and β-catenin low-expression group (P<0.05 for all). Cox multifactor regression analysis revealed that the distant metastasis, Enneking stage, and the expression of Sox4 and β-catenin were independent risk factors of patients with osteosarcoma (P<0.05 for all). The findings indicated that overexpression of Sox4 and β-catenin is associated with a poor prognosis of osteosarcoma.
Adolescent
;
Adult
;
Biomarkers, Tumor
;
genetics
;
metabolism
;
Bone Neoplasms
;
metabolism
;
pathology
;
Case-Control Studies
;
Child
;
Female
;
Humans
;
Lung Neoplasms
;
metabolism
;
secondary
;
Male
;
Middle Aged
;
Osteosarcoma
;
metabolism
;
pathology
;
SOXC Transcription Factors
;
genetics
;
metabolism
;
beta Catenin
;
genetics
;
metabolism

Result Analysis
Print
Save
E-mail