1.Co-regulation of circadian clock genes and microRNAs in bone metabolism.
Tingting LI ; Shihua ZHANG ; Yuxuan YANG ; Lingli ZHANG ; Yu YUAN ; Jun ZOU
Journal of Zhejiang University. Science. B 2022;23(7):529-546
Mammalian bone is constantly metabolized from the embryonic stage, and the maintenance of bone health depends on the dynamic balance between bone resorption and bone formation, mediated by osteoclasts and osteoblasts. It is widely recognized that circadian clock genes can regulate bone metabolism. In recent years, the regulation of bone metabolism by non-coding RNAs has become a hotspot of research. MicroRNAs can participate in bone catabolism and anabolism by targeting key factors related to bone metabolism, including circadian clock genes. However, research in this field has been conducted only in recent years and the mechanisms involved are not yet well established. Recent studies have focused on how to target circadian clock genes to treat some diseases, such as autoimmune diseases, but few have focused on the co-regulation of circadian clock genes and microRNAs in bone metabolic diseases. Therefore, in this paper we review the progress of research on the co-regulation of bone metabolism by circadian clock genes and microRNAs, aiming to provide new ideas for the prevention and treatment of bone metabolic diseases such as osteoporosis.
Animals
;
Circadian Clocks/genetics*
;
Circadian Rhythm/genetics*
;
Mammals/genetics*
;
MicroRNAs/genetics*
;
Osteogenesis/genetics*
;
Osteoporosis/genetics*
2.Genome-wide Association Studies for Osteoporosis: A 2013 Update.
Yong Jun LIU ; Lei ZHANG ; Christopher J PAPASIAN ; Hong Wen DENG
Journal of Bone Metabolism 2014;21(2):99-116
In the past few years, the bone field has witnessed great advances in genome-wide association studies (GWASs) of osteoporosis, with a number of promising genes identified. In particular, meta-analysis of GWASs, aimed at increasing the power of studies by combining the results from different study populations, have led to the identification of novel associations that would not otherwise have been identified in individual GWASs. Recently, the first whole genome sequencing study for osteoporosis and fractures was published, reporting a novel rare nonsense mutation. This review summarizes the important and representative findings published by December 2013. Comments are made on the notable findings and representative studies for their potential influence and implications on our present understanding of the genetics of osteoporosis. Potential limitations of GWASs and their meta-analyses are evaluated, with an emphasis on understanding the reasons for inconsistent results between different studies and clarification of misinterpretation of GWAS meta-analysis results. Implications and challenges of GWAS are also discussed, including the need for multi- and inter-disciplinary studies.
Codon, Nonsense
;
Genetics
;
Genome
;
Genome-Wide Association Study*
;
Osteoporosis*
3.Role of ATP6V1H gene in bone metabolism.
Jin-Jin MA ; Jun YING ; Xiao-Hong DUAN ; Lu-Wei XIAO ; Hong-Ting JIN ; Jian-Ying FENG
China Journal of Orthopaedics and Traumatology 2021;34(3):265-268
Osteoporosis is one of the common clinical orthopedic diseases, which can lead to a variety of complications. There are many pathogenic factors in this disease. The latest research found that ATP6V1H is a new gene leading to the occurrence of osteoporosis, and it is likely to become a new target for the future drug treatment of osteoporosis.This paper introduces the biological structure and characteristics of H subunit, summed up the human body caused by loss of ATP6V1H and animal models such as zebrafish, mice bone loss and osteoporosis symptom such as related research reports of the loss, from osteoclast, osteoblast and marrow stromal cell level and the connection between the various subunits further expounds the H subunit regulate bone dynamic balance of mechanism, to explore ATP6V1H in bone developmentand bone related diseases has laid a solid foundation, also provide new ideas for clinical treatment of osteoporosis.
Animals
;
Bone and Bones
;
Mice
;
Osteoblasts
;
Osteoclasts
;
Osteoporosis/genetics*
;
Zebrafish
4.Research progress of optic atrophy 1-mediated mitochondrial dynamics in skeletal system diseases.
Kaibo SUN ; Yuangang WU ; Yi ZENG ; Mingyang LI ; Limin WU ; Bin SHEN
Chinese Journal of Reparative and Reconstructive Surgery 2023;37(6):758-763
OBJECTIVE:
To review the research progress of mitochondrial dynamics mediated by optic atrophy 1 (OPA1) in skeletal system diseases.
METHODS:
The literatures about OPA1-mediated mitochondrial dynamics in recent years were reviewed, and the bioactive ingredients and drugs for the treatment of skeletal system diseases were summarized, which provided a new idea for the treatment of osteoarthritis.
RESULTS:
OPA1 is a key factor involved in mitochondrial dynamics and energetics and in maintaining the stability of the mitochondrial genome. Accumulating evidence indicates that OPA1-mediated mitochondrial dynamics plays an important role in the regulation of skeletal system diseases such as osteoarthritis, osteoporosis, and osteosarcoma.
CONCLUSION
OPA1-mediated mitochondrial dynamics provides an important theoretical basis for the prevention and treatment of skeletal system diseases.
Humans
;
GTP Phosphohydrolases/genetics*
;
Mitochondrial Dynamics
;
Osteoarthritis
;
Osteoporosis
5.A novel mutation in TPRS1 gene caused tricho-rhino-phalangeal syndrome in a Chinese patient with severe osteoporosis.
Cong SHAO ; Jun TIAN ; Dong-Hong SHI ; Chun-Xiao YU ; Chao XU ; Lai-Cheng WANG ; Ling GAO ; Jia-Jun ZHAO
Chinese Medical Journal 2011;124(10):1583-1585
Tricho-rhino-phalangeal syndrome (TRPS) was first reported in 1966. Although mutation of TRPS1 gene is considered to be responsible for the syndromes in 2000, investigation of bone metabolism and changes of serum insulin-like growth factor (IGF)-1 level in this kind of patients is rare. Here, we report a patient with TRPS I (MIM 190350) presenting a novel mutation (1096insA) and abnormal changes of severe osteoporosis as well as low serum IGF-I level.
Adolescent
;
DNA-Binding Proteins
;
genetics
;
Humans
;
Langer-Giedion Syndrome
;
genetics
;
Male
;
Mutation
;
Osteoporosis
;
genetics
;
Transcription Factors
;
genetics
6.Changes in the gut microbiota of osteoporosis patients based on 16S rRNA gene sequencing: a systematic review and meta-analysis.
Rui HUANG ; Pan LIU ; Yiguang BAI ; Jieqiong HUANG ; Rui PAN ; Huihua LI ; Yeping SU ; Quan ZHOU ; Ruixin MA ; Shaohui ZONG ; Gaofeng ZENG
Journal of Zhejiang University. Science. B 2022;23(12):1002-1013
BACKGROUND: Osteoporosis (OP) has become a major public health issue, threatening the bone health of middle-aged and elderly people from all around the world. Changes in the gut microbiota (GM) are correlated with the maintenance of bone mass and bone quality. However, research results in this field remain highly controversial, and no systematic review or meta-analysis of the relationship between GM and OP has been conducted. This paper addresses this shortcoming, focusing on the difference in the GM abundance between OP patients and healthy controls based on previous 16S ribosomal RNA (rRNA) gene sequencing results, in order to provide new clinical reference information for future customized prevention and treatment options of OP. METHODS: According to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), we comprehensively searched the databases of PubMed, Web of Science, Embase, Cochrane Library, and China National Knowledge Infrastructure (CNKI). In addition, we applied the R programming language version 4.0.3 and Stata 15.1 software for data analysis. We also implemented the Newcastle-Ottawa Scale (NOS), funnel plot analysis, sensitivity analysis, Egger's test, and Begg's test to assess the risk of bias. RESULTS: This research ultimately considered 12 studies, which included the fecal GM data of 2033 people (604 with OP and 1429 healthy controls). In the included research papers, it was observed that the relative abundance of Lactobacillus and Ruminococcus increased in the OP group, while the relative abundance for Bacteroides of Bacteroidetes increased (except for Ireland). Meanwhile, Firmicutes, Blautia, Alistipes, Megamonas, and Anaerostipes showed reduced relative abundance in Chinese studies. In the linear discriminant analysis Effect Size (LEfSe) analysis, certain bacteria showed statistically significant results consistently across different studies. CONCLUSIONS: This observational meta-analysis revealed that changes in the GM were correlated with OP, and variations in some advantageous GM might involve regional differences.
Middle Aged
;
Aged
;
Humans
;
Gastrointestinal Microbiome/genetics*
;
RNA, Ribosomal, 16S/genetics*
;
Genes, rRNA
;
Osteoporosis
;
Feces
7.Bioinformatics analysis and identification to immune-related markers of osteoporosis.
Chinese Journal of Cellular and Molecular Immunology 2023;39(12):1108-1113
Objective To identify immune-related dysregulation mechanisms and potential diagnostic predictive biomarkers in osteoporosis. Methods Gene expression data for both osteoporosis and control populations were retrieved from the GSE35958 and GSE56815 datasets. Immune-related differentially expressed genes (DEGs) were obtained by screening DEGs and were compared with the immunology database and analysis portal (ImmPort) database. Enrichment analysis of these immune-related DEGs was conducted using the Clusterprofiler software package. A protein-protein interaction network was built with the STRING database, which is a search tool for finding interacting genes/proteins, and the top 10 genes with the highest network connectivity were identified as candidate genes. Subsequently, the diagnostic predictive effect of candidate genes was evaluated using receiver operating characteristic (ROC) curves, logistic regression, and column plots. Finally, PCR and Western blot analysis were applied to detect the differential expression of these genes in bone marrow tissue of patients with osteoporosis. Results A total of 138 immune-related DEGs were obtained through intersection analysis. The results of the enrichment analysis indicated that these genes were involved in biological functions such as immune inflammation and signaling pathways including T cell receptors, mitogen activated protein kinase (MAPK), rat sarcoma virus oncogene homologs (Ras), osteoclast differentiation, and B cell receptors. In addition, among the candidate genes, upregulated vascular endothelial growth factor A (VEGFA) and epidermal growth factor receptor (EGFR) and downregulated AKT1, SRC, and JUN in osteoporosis showed the highest connectivity. Among them, VEGFA, EGFR, JUN, and AKT1 demonstrated the best diagnostic predictive value. Conclusion The screening of immune-related DEGs will enhance the understanding of osteoporosis and facilitate the development of immunotherapy targets.
Humans
;
Vascular Endothelial Growth Factor A/genetics*
;
Biomarkers
;
Osteoporosis/genetics*
;
Computational Biology/methods*
;
ErbB Receptors/genetics*
;
Gene Expression Profiling/methods*
8.Genetic determination of osteoporosis in Chinese.
Su-mei XIAO ; Shu-feng LEI ; Hong-wen DENG
Chinese Medical Journal 2005;118(24):2077-2088
10.Low-magnitude vibration promotes osteogenesis of osteoblasts in ovariectomized osteoporotic rats via the estrogen receptor
Guangguang ZHU ; Xiaoqin YU ; Jirui WEN ; Mingyue BAO ; Min TANG ; Jingge WANG ; Xueling HE ; Liang LI
Journal of Biomedical Engineering 2020;37(5):825-833
The purpose of this study was to investigate the effect of low-magnitude vibration on osteogenesis of osteoblasts in ovariectomized rats with osteoporosis via estrogen receptor α(ERα). The mRNA expression of osteogenic markers were examined with qRT-PCR, based on which the optimal vibration parameter for promoting osteogenesis was determined (45 Hz × 0.9 g, g = 9.8 m/s
Animals
;
Cell Differentiation
;
Estrogen Receptor alpha/genetics*
;
Female
;
Osteoblasts
;
Osteogenesis
;
Osteoporosis
;
Ovariectomy
;
Rats
;
Vibration