1.Salidroside inhibits osteoclast differentiation based on osteoblast-osteoclast interaction via HIF-1a pathway.
Yutong JIN ; Yao WANG ; Chuan WANG ; Lingling ZHANG ; Dandan GAO ; Haizhao LIU ; Qingwen CAO ; Chenchen TIAN ; Yuhong BIAN ; Yue WANG
Chinese Journal of Natural Medicines (English Ed.) 2025;23(5):572-584
This study investigated the regulatory potential of salidroside (SAL), a primary active compound in Rhodiola rosea L., on osteoclast differentiation by modulating the hypoxia-inducible factor 1-alpha (HIF-1a) pathway in osteoblasts. Luciferase reporter assay and chromatin immunoprecipitation (ChIP) assay were employed to validate whether the receptor activator of nuclear factor-?B ligand (RANKL) is the downstream target gene of HIF-1a in osteoblasts. The study also utilized lipopolysaccharide (LPS)-induced mouse osteolysis to examine the impact of SAL on osteolysis in vivo. Furthermore, conditioned medium (CM) from SAL-pretreated osteoblasts was used to investigate the paracrine effects on osteoclastogenesis through the HIF-1a pathway. Hypoxic condition-induced overexpression of HIF-1a upregulated RANKL levels by binding to the RANKL promoter and enhancing transcription in osteoblastic cells. In vivo, SAL significantly alleviated bone tissue hypoxia and decreased the expression of HIF-1a by downregulating the expression of RANKL, vascular endothelial growth factor (VEGF), interleukin 6 (IL-6), and angiopoietin-like 4 (ANGPTL4). In the paracrine experiment, conditioned media from SAL-pretreated osteoblasts inhibited differentiation through the HIF-1a/RANKL, VEGF, IL-6, and ANGPTL4 pathways. RANKL emerges as the downstream target gene regulated by HIF-1a in osteoblasts. SAL significantly alleviates bone tissue hypoxia and bone loss in LPS-induced osteolysis through the HIF-1a/RANKL, VEGF, IL-6, and ANGPTL4 pathways. SAL inhibits osteoclast differentiation by regulating osteoblast paracrine secretion.
Animals
;
Osteoblasts/cytology*
;
Hypoxia-Inducible Factor 1, alpha Subunit/genetics*
;
Glucosides/administration & dosage*
;
Cell Differentiation/drug effects*
;
Phenols/administration & dosage*
;
Mice
;
Osteoclasts/metabolism*
;
RANK Ligand/genetics*
;
Rhodiola/chemistry*
;
Osteogenesis/drug effects*
;
Signal Transduction/drug effects*
;
Interleukin-6/genetics*
;
Male
;
RAW 264.7 Cells
;
Osteolysis/genetics*
;
Humans
;
Mice, Inbred C57BL
2.Effect of naringin on osteoclast differentiation.
Feng-bo LI ; Xiao-lei SUN ; Jian-xiong MA ; Yang ZHANG ; Bin ZHAO ; Yan-jun LI ; Xin-long MA
China Journal of Chinese Materia Medica 2015;40(2):308-312
OBJECTIVETo discuss the effect of Drynariae Rhizoma's naringin on osteoclasts induced by mouse monocyte RAW264.7.
METHODRAW264.7 cells were induced by 100 μg x L(-1) nuclear factor-κB receptor activator ligand (RANKL) and became mature osteoclasts, which were identified through TRAP specific staining and bone resorption. MTT method was sued to screen and inhibit and the highest concentration of osteoclasts. After being cultured with the screened medium containing naringin for 5 days, positive TRAP cell counting and bone absorption area analysis were adopted to observe the effect of naringin on the formation of osteoclast sells and the bone absorption function. The osteoclast proliferation was measured by flow cytometry. The effects of RANK, TRAP, MMP-9, NFATc1 and C-fos mRNA expressions on nuclear factor-κB were detected by RT-PCR.
RESULTNaringin could inhibit osteoclast differentiation, bone absorption function and proliferation activity of osteoclasts, significantly down-regulate RANK, TRAP, MMP-9 and NFATc1 mRNA expressions in the osteoclast differentiation process, and up-regulate the C-fos mRNA expression.
CONCLUSIONNaringin could inhibit osteoclast differentiation, proliferation and bone absorption function. Its mechanism may be achieved by inhibiting the specific gene expression during the osteoclast differentiation process.
Acid Phosphatase ; metabolism ; Animals ; Cell Differentiation ; drug effects ; Cell Proliferation ; drug effects ; Cells, Cultured ; Flavanones ; pharmacology ; Isoenzymes ; metabolism ; Matrix Metalloproteinase 9 ; genetics ; Mice ; NFATC Transcription Factors ; genetics ; Osteoclasts ; cytology ; drug effects ; Tartrate-Resistant Acid Phosphatase
3.Involvement of the Ca2+ signaling pathway in osteoprotegerin inhibition of osteoclast differentiation and maturation.
Yingxiao FU ; Jianhong GU ; Yi WANG ; Yan YUAN ; Xuezhong LIU ; Jianchun BIAN ; Zong Ping LIU
Journal of Veterinary Science 2015;16(2):151-156
The purpose of this study was to determine whether the Ca2+ signaling pathway is involved in the ability of osteoprotegerin (OPG) to inhibit osteoclast differentiation and maturation. RAW264.7 cells were incubated with macrophage colony-stimulating factor (M-CSF) + receptor activator of nuclear factor-kappaB ligand (RANKL) to stimulate osteoclastogenesis and then treated with different concentrations of OPG, an inhibitor of osteoclast differentiation. The intracellular Ca2+ concentration [Ca2+]i and phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in the different treatment groups were measured by flow cytometry and Western blotting, respectively. The results confirmed that M-CSF + RANKL significantly increased [Ca2+]i and CaMKII phosphorylation in osteoclasts (p < 0.01), and that these effects were subsequently decreased by OPG treatment. Exposure to specific inhibitors of the Ca2+ signaling pathway revealed that these changes varied between the different OPG treatment groups. Findings from the present study indicated that the Ca2+ signaling pathway is involved in both the regulation of osteoclastogenesis as well as inhibition of osteoclast differentiation and activation by OPG.
Animals
;
Calcium/*metabolism
;
*Calcium Signaling
;
*Cell Differentiation/drug effects
;
Cell Line
;
Cell Survival/drug effects
;
Gene Expression Regulation/drug effects
;
Macrophage Colony-Stimulating Factor/metabolism
;
Mice
;
Osteoclasts/*cytology/*drug effects/*metabolism
;
Osteoprotegerin/*pharmacology
;
RANK Ligand/metabolism
4.Eupatilin Ameliorates Collagen Induced Arthritis.
Juryun KIM ; Youngkyun KIM ; Hyoju YI ; Hyerin JUNG ; Yeri Alice RIM ; Narae PARK ; Seung Min JUNG ; Sung Hwan PARK ; Ji Hyeon JU
Journal of Korean Medical Science 2015;30(3):233-239
Eupatilin is the main active component of DA-9601, an extract from Artemisia. Recently, eupatilin was reported to have anti-inflammatory properties. We investigated the anti-arthritic effect of eupatilin in a murine arthritis model and human rheumatoid synoviocytes. DA-9601 was injected into collagen-induced arthritis (CIA) mice. Arthritis score was regularly evaluated. Mouse monocytes were differentiated into osteoclasts when eupatilin was added simultaneously. Osteoclasts were stained with tartrate-resistant acid phosphatase and then manually counted. Rheumatoid synoviocytes were stimulated with TNF-alpha and then treated with eupatilin, and the levels of IL-6 and IL-1beta mRNA expression in synoviocytes were measured by RT-PCR. Intraperitoneal injection of DA-9601 reduced arthritis scores in CIA mice. TNF-alpha treatment of synoviocytes increased the expression of IL-6 and IL-1beta mRNAs, which was inhibited by eupatilin. Eupatilin decreased the number of osteoclasts in a concentration dependent manner. These findings, showing that eupatilin and DA-9601 inhibited the expression of inflammatory cytokines and the differentiation of osteoclasts, suggest that eupatilin and DA-9601 is a candidate anti-inflammatory agent.
Animals
;
Anti-Inflammatory Agents/pharmacology/*therapeutic use
;
Arthritis, Experimental/chemically induced/*drug therapy
;
Arthritis, Rheumatoid/drug therapy/pathology
;
Cell Differentiation/*drug effects
;
Cells, Cultured
;
Collagen Type II
;
Cytokines/biosynthesis
;
Disease Models, Animal
;
Drugs, Chinese Herbal/therapeutic use
;
Female
;
Flavonoids/pharmacology/*therapeutic use
;
Humans
;
Inflammation/drug therapy/immunology
;
Interleukin-1beta/genetics/metabolism
;
Interleukin-6/genetics/metabolism
;
Lymph Nodes/cytology
;
Mice
;
Mice, Inbred DBA
;
Monocytes/cytology
;
Osteoclasts/*cytology
;
Plant Extracts/pharmacology
;
RNA, Messenger/biosynthesis
;
Synovial Membrane/cytology
;
T-Lymphocytes, Regulatory/cytology/immunology
;
Tumor Necrosis Factor-alpha/pharmacology
5.The function and meaning of receptor activator of NF-κB ligand in arterial calcification.
Bin NIE ; Shao-qiong ZHOU ; Xin FANG ; Shao-ying ZHANG ; Si-ming GUAN
Journal of Huazhong University of Science and Technology (Medical Sciences) 2015;35(5):666-671
Osteoclast-like cells are known to inhibit arterial calcification. Receptor activator of NF-κB ligand (RANKL) is likely to act as an inducer of osteoclast-like cell differentiation. However, several studies have shown that RANKL promotes arterial calcification rather than inhibiting arterial calcification. The present study was conducted in order to investigate and elucidate this paradox. Firstly, RANKL was added into the media, and the monocyte precursor cells were cultured. Morphological observation and Tartrate resistant acid phosphatase (TRAP) staining were used to assess whether RANKL could induce the monocyte precursor cells to differentiate into osteoclast-like cells. During arterial calcification, in vivo and in vitro expression of RANKL and its inhibitor, osteoprotegerin (OPG), was detected by real-time PCR. The extent of osteoclast-like cell differentiation was also assessed. It was found RANKL could induce osteoclast-like cell differentiation. There was no in vivo or in vitro expression of osteoclast-like cells in the early stage of calcification. At that time, the ratio of RANKL to OPG was very low. In the late stage of calcification, a small amount of osteoclast-like cell expression coincided with a relatively high ratio of RANKL to OPG. According to the results, the ratio of RANKL to OPG was very low during most of the arterial calcification period. This made it possible for OPG to completely inhibit RANKL-induced osteoclast-like cell differentiation. This likely explains why RANKL had the ability to induce osteoclast-like cell differentiation but acted as a promoter of calcification instead.
Acid Phosphatase
;
genetics
;
metabolism
;
Animals
;
Aorta
;
drug effects
;
metabolism
;
pathology
;
Cell Differentiation
;
Coculture Techniques
;
Gene Expression Regulation
;
Isoenzymes
;
genetics
;
metabolism
;
Male
;
Monocytes
;
cytology
;
drug effects
;
metabolism
;
Myocytes, Smooth Muscle
;
drug effects
;
metabolism
;
pathology
;
Osteoclasts
;
drug effects
;
metabolism
;
pathology
;
Osteoprotegerin
;
genetics
;
metabolism
;
RANK Ligand
;
genetics
;
metabolism
;
pharmacology
;
Rats
;
Rats, Sprague-Dawley
;
Signal Transduction
;
Tartrate-Resistant Acid Phosphatase
;
Vascular Calcification
;
genetics
;
metabolism
;
pathology
6.Regulation of matrix metalloproteinase-9 protein expression by 1alpha,25-(OH)2D3 during osteoclast differentiation.
Jian Hong GU ; Xi Shuai TONG ; Guo Hong CHEN ; Xue Zhong LIU ; Jian Chun BIAN ; Yan YUAN ; Zong Ping LIU
Journal of Veterinary Science 2014;15(1):133-140
To investigate 1alpha,25-(OH)2D3 regulation of matrix metalloproteinase-9 (MMP-9) protein expression during osteoclast formation and differentiation, receptor activator of nuclear factor kappaB ligand (RANKL) and macrophage colony-stimulating factor (M-CSF) were administered to induce the differentiation of RAW264.7 cells into osteoclasts. The cells were incubated with different concentrations of 1alpha,25-(OH)2D3 during culturing, and cell proliferation was measured using the methylthiazol tetrazolium method. Osteoclast formation was confirmed using tartrate-resistant acid phosphatase (TRAP) staining and assessing bone lacunar resorption. MMP-9 protein expression levels were measured with Western blotting. We showed that 1alpha,25-(OH)2D3 inhibited RAW264.7 cell proliferation induced by RANKL and M-CSF, increased the numbers of TRAP-positive osteoclasts and their nuclei, enhanced osteoclast bone resorption, and promoted MMP-9 protein expression in a concentration-dependent manner. These findings indicate that 1alpha,25-(OH)2D3 administered at a physiological relevant concentration promoted osteoclast formation and could regulate osteoclast bone metabolism by increasing MMP-9 protein expression during osteoclast differentiation.
Acid Phosphatase/metabolism
;
Animals
;
Blotting, Western
;
Calcitriol/*pharmacology
;
Calcium Channel Agonists/pharmacology
;
*Cell Differentiation
;
Cell Line
;
Cell Proliferation
;
Gene Expression Regulation, Enzymologic/*drug effects
;
Isoenzymes/metabolism
;
Matrix Metalloproteinase 9/*genetics/metabolism
;
Mice
;
Osteoclasts/*cytology/*enzymology
;
Tetrazolium Salts
;
Thiazoles
7.Inhibitory effects of osteoprotegerin on osteoclast formation and function under serum-free conditions.
Ying Xiao FU ; Jian Hong GU ; Yi Ran ZHANG ; Xi Shuai TONG ; Hong Yan ZHAO ; Yan YUAN ; Xue Zhong LIU ; Jian Chun BIAN ; Zong Ping LIU
Journal of Veterinary Science 2013;14(4):405-412
The purpose of this study was to determine whether osteoprotegerin (OPG) could affect osteoclat differentiation and activation under serum-free conditions. Both duck embryo bone marrow cells and RAW264.7 cells were incubated with macrophage colony stimulatory factor (M-CSF) and receptor activator for nuclear factor kappaB ligand (RANKL) in serum-free medium to promote osteoclastogenesis. During cultivation, 0, 10, 20, 50, and 100 ng/mL OPG were added to various groups of cells. Osteoclast differentiation and activation were monitored via tartrate-resistant acid phosphatase (TRAP) staining, filamentous-actin rings analysis, and a bone resorption assay. Furthermore, the expression osteoclast-related genes, such as TRAP and receptor activator for nuclear factor kappaB (RANK), that was influenced by OPG in RAW264.7 cells was examined using real-time polymerase chain reaction. In summary, findings from the present study suggested that M-CSF with RANKL can promote osteoclast differentiation and activation, and enhance the expression of TRAP and RANK mRNA in osteoclasts. In contrast, OPG inhibited these activities under serum-free conditions.
Acid Phosphatase/genetics/metabolism
;
Animals
;
Avian Proteins/*pharmacology
;
Bone Marrow Cells/drug effects/*metabolism
;
Cells, Cultured
;
Ducks
;
Embryo, Nonmammalian/drug effects/metabolism
;
Isoenzymes/genetics/metabolism
;
Macrophage Colony-Stimulating Factor/metabolism
;
Osteoclasts/cytology/*drug effects/*metabolism
;
Osteoprotegerin/*pharmacology
;
RANK Ligand/metabolism
;
Real-Time Polymerase Chain Reaction
;
Receptor Activator of Nuclear Factor-kappa B/genetics/metabolism
8.Inhibitory effect of 8-prenylnaringenin on osteoclastogensis of bone marrow cells and bone resorption activity.
Xiang LÜ ; Ying ZHOU ; Ke-Ming CHEN ; Zhi ZHAO ; Jian ZHOU ; Xiao-Ni MA
Acta Pharmaceutica Sinica 2013;48(3):347-351
This study is to investigate the effect of 8-prenylnaringenin (8-PNG) on osteoclastogensis of bone marrow cells and bone resorption activity of osteoclasts. Osteoclasts were separated from long bone marrow of newborn rabbits and cultured in alpha-MEM containing 10% FBS. 8-PNG was added into culture media at 1 x 10(-7), 1 x 10(-6), 1 x 10(-5) mol xL(-1), separately. 17beta-Estradiol (E2, 1 x 10(-7) mol x L(-7)) was used as positive control. T RAP staining and TRAP activity measurement were performed after 5 days, and the bone resorption pits were analyzed after 7 days. Annexin V staining for the detection of apoptotic osteoclasts was performed after 2, 4, 8, 12, 24, 36 and 48 h separately. The mRNA expression level of TRAP and cathepsin K (CTSK) was measured by real-time RT-PCR. 8-PNG significantly reduced the number of osteoclasts which was TRAP staining positive and with more than three nucleus, the area and number of bone resorption pits decreased obviously in 8-PNG-supplemented groups. The apoptosis rate peaked earlier in the 8-PNG-supplemented groups and the mRNA expression level of TRAP and CTSK decreased significantly. All these inhibitory effects were in a dose dependent manner, the highest effect was obtained by 1 x 10(-5) mol x L(-1) 8-PNG. 8-PNG inhibits bone resorption activity of osteoclasts by inducing osteoclast apoptosis and inhibiting the gene expression and enzyme activity including TRAP and CTSK, and restrains bone marrow cells to osteoclast differentiation.
Acid Phosphatase
;
genetics
;
metabolism
;
Animals
;
Apoptosis
;
drug effects
;
Bone Marrow Cells
;
cytology
;
Bone Resorption
;
Cathepsin K
;
genetics
;
metabolism
;
Cells, Cultured
;
Dose-Response Relationship, Drug
;
Flavanones
;
administration & dosage
;
pharmacology
;
Isoenzymes
;
genetics
;
metabolism
;
Osteoclasts
;
cytology
;
metabolism
;
RNA, Messenger
;
metabolism
;
Rabbits
;
Tartrate-Resistant Acid Phosphatase
9.Ischemic Stroke in Rats Enhances Bone Resorption in Vitro.
Myung Eun CHUNG ; Jong In LEE ; Sun IM ; Joo Hyun PARK
Journal of Korean Medical Science 2012;27(1):84-88
We hypothesized that the formation and differentialtion of osteoclasts are accelerated and the potential of bone resorption is increased in the hemiplegic bone marrow in the early stage of stroke. We randomly divided white female Sprague-Dawley (SD) rats (n = 30) into two groups, stroke (n = 15) and sham group (n = 15). On the 7th day after stroke, after cutting away the epiphyses of the femurs and tibias, diaphyseal channels were flushed using alpha-minimum essential medium (alpha-MEM) and bone marrow cells were collected. Bone marrow stem cells, which were extracted from the femur and tibia, were cultured on the 7th day after middle cerebral artery occlusion. We then estimated the ratio of non-adherent cells to total bone marrow cells that included osteoclast precursor cells. After culturing these cells separately, cells that tested positive on the tartrate resistant acid phosphatase (TRAP) were counted and bone resorption was evaluated by using the OAAS(TM) plate. In comparison to the control group, the stroke group showed a higher increase of non-adherent cells in the hemiplegic side bone marrow. In addition, after the primary culture, the stroke group showed an increased number of TRAP positive cells and a higher degree of bone resorption estimated by OAAS(TM) plate. As a result, osteoclastogenesis and osteoclast differentiation are accelerated and the potential of bone resorption is increased in the hemiplegic bone marrow and these changes are detected as early as within the first week after middle cerebral artery occlusion in SD rats.
Animals
;
Bone Marrow Cells/cytology/drug effects
;
Bone Resorption/*physiopathology
;
Cell Differentiation
;
Cell Separation
;
Cells, Cultured
;
Female
;
Femur/cytology
;
Osteoclasts/cytology
;
Rats
;
Rats, Sprague-Dawley
;
Stem Cells/cytology/metabolism
;
Stroke/*metabolism/pathology
;
Tartrates/pharmacology
;
Tibia/cytology
10.Design and activity verification of human parathyroid hormone (1-34) mutant protein.
Shuang QIU ; Yue-Shui JIANG ; Zhi-Qin LI ; Jian-Yong LEI ; Yun CHEN ; Jian JIN
Acta Pharmaceutica Sinica 2012;47(7):909-915
Through protein-protein BLAST of homologous sequences in different species in NCBI database and preliminary simulating molecular docking and molecular dynamics by computer software discovery studio 3.1, three amino acids R25K26K27 of natural human parathyroid hormone (1-34) with Q25E26L27 were mutated and the biological activity of the mutant peptide was evaluated. Result showed that: root mean superposition deviation RMSD value between PTH (1-34)-(RKK-QEL) and PTH (1-34) peptide main chain was 2.509 3, indicating that the differences between the two main chain structural conformation was relatively small; the interaction energy between PTH (1-34)-(RKK-QEL) and its receptor protein PTH1R had been enhanced by 7.5% compared to nature PTH (1-34), from -554.083 kcal x mol(-1) to -599.253 kcal x mol(-1); the number of hydrogen bonds was increased from 32 to 38; PTH (1-34)-(RKK-QEL) can significantly stimulate the RANKL gene expression (P < 0.01) while inhibiting the OPG gene expression (P < 0.01) in UAMS-32P cells; in the co-culture system of UAMS-32P cells and mouse primary femur bone marrow cells, PTH (1-34)-(RKK-QEL) stimulated the formation of osteoclasts (P < 0.01) and had a higher biological activity than PTH (1-34) standard reagents.
Animals
;
Bone Marrow Cells
;
cytology
;
metabolism
;
Coculture Techniques
;
Mice
;
Mutant Proteins
;
genetics
;
pharmacology
;
Mutation
;
Osteoclasts
;
cytology
;
drug effects
;
Osteogenesis
;
drug effects
;
Osteoprotegerin
;
genetics
;
metabolism
;
RANK Ligand
;
genetics
;
metabolism
;
RNA, Messenger
;
metabolism
;
Receptor, Parathyroid Hormone, Type 1
;
metabolism
;
Teriparatide
;
pharmacology

Result Analysis
Print
Save
E-mail