1.Structure basis for the unique specificity of medaka enteropeptidase light chain.
Jin XU ; Shi HU ; Xiaoze WANG ; Ziye ZHAO ; Xinyue ZHANG ; Hao WANG ; Dapeng ZHANG ; Yajun GUO
Protein & Cell 2014;5(3):178-181
2.Efficient gene editing in a medaka (Oryzias latipes) cell line and embryos by SpCas9/tRNA-gRNA.
Qihua PAN ; Junzhi LUO ; Yuewen JIANG ; Zhi WANG ; Ke LU ; Tiansheng CHEN
Journal of Zhejiang University. Science. B 2022;23(1):74-83
Generation of mutants with clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) is commonly carried out in fish species by co-injecting a mixture of Cas9 messenger RNA (mRNA) or protein and transcribed guide RNA (gRNA). However, the appropriate expression system to produce functional gRNAs in fish embryos and cells is rarely present. In this study, we employed a poly-transfer RNA (tRNA)-gRNA (PTG) system driven by cytomegalovirus (CMV) promoter to target the medaka (Oryzias latipes) endogenous gene tyrosinase(tyr) or paired box 6.1 (pax6.1) and illustrated its function in a medaka cell line and embryos. The PTG system was combined with the CRISPR/Cas9 system under high levels of promoter to successfully induce gene editing in medaka. This is a valuable step forward in potential application of the CRISPR/Cas9 system in medaka and other teleosts.
Animals
;
CRISPR-Cas Systems
;
Cell Line
;
Gene Editing
;
Oryzias/genetics*
;
RNA, Guide/genetics*
;
RNA, Transfer/genetics*
3.Aquatic Toxicity Assessment of Phosphate Compounds.
Eunju KIM ; Sunkyoung YOO ; Hee Young RO ; Hye Jin HAN ; Yong Wook BAEK ; Ig Chun EOM ; Hyun Mi KIM ; Pilje KIM ; Kyunghee CHOI
Environmental Health and Toxicology 2013;28(1):e2013002-
OBJECTIVES: Tricalcium phosphate and calcium hydrogenorthophosphate are high production volume chemicals, mainly used as foodstuff additives, pharmaceuticals, lubricants, synthetic resin, and disinfectants. Phosphate has the potential to cause increased algal growth leading to eutrophication in the aquatic environment. However, there is no adequate information available on risk assessment or acute and chronic toxicity. The aim of this research is to evaluate the toxic potential of phosphate compounds in the aquatic environment. METHODS: An aquatic toxicity test of phosphate was conducted, and its physico-chemical properties were obtained from a database recommended in the Organization for Economic Cooperation and Development (OECD) guidance manual. An ecotoxicity test using fish, Daphnia, and algae was conducted by the good laboratory practice facility according to the OECD TG guidelines for testing of chemicals, to secure reliable data. RESULTS: The results of the ecotoxicity tests of tricalcium phosphate and calcium hydrogenorthophosphate are as follows: In an acute toxicity test with Oryzias latipes, 96 hr 50% lethal concentration (LC50) was >100 (measured:>2.14) mg/L and >100 (measured: >13.5) mg/L, respectively. In the Daphnia test, 48 hr 50% effective concentration (EC50) was >100 (measured: >5.35) mg/L and >100 (measured: >2.9) mg/L, respectively. In a growth inhibition test with Pseudokirchneriella subcapitata, 72 hr EC50 was >100 (measured: >1.56) mg/L and >100 (measured: >4.4) mg/L, respectively. CONCLUSIONS: Based on the results of the ecotoxicity test of phosphate using fish, Daphnia, and algae, L(E)C50 was above 100 mg/L (nominal), indicating no toxicity. In general, the total phosphorus concentration including phosphate in rivers and lakes reaches levels of several ppm, suggesting that phosphate has no toxic effects. However, excessive inflow of phosphate into aquatic ecosystems has the potential to cause eutrophication due to algal growth.
Calcium
;
Daphnia
;
Disinfectants
;
Ecosystem
;
Eutrophication
;
Lakes
;
Lubricants
;
Oryzias
;
Phosphorus
;
Resins, Synthetic
;
Risk Assessment
;
Rivers
;
Toxicity Tests
;
Toxicity Tests, Acute
4.Medaka Fish Parkinson's Disease Model.
Hideaki MATSUI ; Roberto GAVINIO ; Ryosuke TAKAHASHI
Experimental Neurobiology 2012;21(3):94-100
The teleost fish has been widely used in creating neurodegenerative models. Here we describe the teleost medaka fish Parkinson's disease (PD) models we developed using toxin treatment and genetic engineering. 1-Methyl-4-phenyl-1,2,3,4-tetrahydropyridine (MPTP), 6-hydroxydopamine (6-OHDA), proteasome inhibitors, lysosome inhibitors and tunicamycin treatment in our model fish replicated some salient features of PD: selective dopamine cell loss and reduced spontaneous movement with the last three toxins producing inclusion bodies ubiquitously in the brain. Despite the ubiquitous distribution of the inclusion bodies, the middle diencephalic dopaminergic neurons were particularly vulnerable to these toxins, supporting the idea that this dopamine cluster is similar to the human substantia nigra. PTEN-induced putative kinase 1 (PINK1) homozygous mutants also showed reduced spontaneous swimming movements. These data indicate that medaka fish can serve as a new model animal of PD. In this review we summarize our previous data and discuss future prospects.
Animals
;
Brain
;
Dopamine
;
Dopaminergic Neurons
;
Genetic Engineering
;
Humans
;
Inclusion Bodies
;
Lysosomes
;
Oryzias
;
Oxidopamine
;
Parkinson Disease
;
Phosphotransferases
;
Proteasome Inhibitors
;
Protein Kinases
;
Substantia Nigra
;
Swimming
;
Tunicamycin
5.Subcellular redistribution and sequential recruitment of macromolecular components during SGIV assembly.
Protein & Cell 2016;7(9):651-661
Virus infection consists of entry, synthesis of macromolecular components, virus assembly and release. Understanding of the mechanisms underlying each event is necessary for the intervention of virus infection in human healthcare and agriculture. Here we report the visualization of Singapore grouper iridovirus (SGIV) assembly in the medaka haploid embryonic stem (ES) cell line HX1. SGIV is a highly infectious DNA virus that causes a massive loss in marine aquaculture. Ectopic expression of VP88GFP, a fusion between green fluorescent protein and the envelope protein VP088, did not compromise the ES cell properties and susceptibility to SGIV infection. Although VP88GFP disperses evenly in the cytoplasm of non-infected cells, it undergoes aggregation and redistribution in SGIV-infected cells. Real-time visualization revealed multiple key stages of VP88GFP redistribution and the dynamics of viral assembly site (VAS). Specifically, VP88GFP entry into and condensation in the VAS occurred within a 6-h duration, a similar duration was observed also for the release of VP88GFP-containing SGIV out of the cell. Taken together, VP088 is an excellent marker for visualizing the SGIV infection process. Our results provide new insight into macromolecular component recruitment and SGIV assembly.
Animals
;
Cell Line
;
Embryonic Stem Cells
;
metabolism
;
pathology
;
virology
;
Fish Diseases
;
genetics
;
metabolism
;
virology
;
Humans
;
Iridoviridae
;
physiology
;
Oryzias
;
Viral Proteins
;
genetics
;
metabolism
;
Virus Assembly
;
physiology