1.Molecular genetic evolution analysis of new A(H1N1) influenza virus.
Li ZHAO ; Yong-Hong LIU ; Yue-Huan LIU ; Feng-Long WANG ; Jian LIN ; Chun-Hua HAN ; Ming MA ; Yu-Lin DING ; Xu-Na DING ; Jin-Ling WANG ; Long-Feng YANG ; Jie PAN ; Jing-Wen HAN
Chinese Journal of Virology 2010;26(2):88-96
In order to analyze the molecular epidemiology of A (H1N1) influenza virus in 2009, the complete genome sequences of influenza strains from different host sources downloaded from the NCBI were analyzed on genetic evolution by DNAstar software in this research. The results showed that 79 mutation sites of new A (H1N1) influenza virus were observed compared to previous human A (H1N1) influenza strain, including 14 mutation sites new in all A (H1N1) influenza sources and 37 mutation sites only observed in swine strain. A significant difference was represented in antigenic sites between new A (H1N1) influenza strain and the previous human A (H1N1) strain. This phenomenon shows the new A (H1N1) influenza strain is either originated from the recombination of human and swine strain or from the infection in pig populations and gradual mutation to human tansmission, which remains to be further studied.
Animals
;
Birds
;
Databases, Nucleic Acid
;
Evolution, Molecular
;
Hemagglutinin Glycoproteins, Influenza Virus
;
classification
;
genetics
;
Humans
;
Influenza A Virus, H1N1 Subtype
;
genetics
;
Influenza in Birds
;
virology
;
Influenza, Human
;
virology
;
Orthomyxoviridae Infections
;
veterinary
;
virology
;
Phylogeny
;
Swine
;
Swine Diseases
;
virology
2.Enteroviruses isolated in patients with acute respiratory infections
Journal of Preventive Medicine 2005;15(5):10-14
In 2004, 185 specimens of patients with acute respiratory illnesses that were tested negative to influenza viruses were isolated to determine enteroviruses. The results showed that 10.8% were positive with enteroviruses. These isolated enteroviruses consist of 13 Coxsackievirus B, 1 Echovirus, 1 Poliosabin type 1, and 5 untyped Enteroviruses. The result also showed that 8.1% of isolated viruses were Adenoviruses
Respiratory Tract Infections
;
Orthomyxoviridae
3.Recovery of respiratory syncytial virus, adenovirus, influenza virus , and parainfluenza virus from nasopharyngeal aspirates from children with acute respiratory tract infections.
Korean Journal of Clinical Pathology 1992;12(4):473-478
No abstract available.
Adenoviridae*
;
Child*
;
Humans
;
Influenza, Human*
;
Orthomyxoviridae*
;
Paramyxoviridae Infections*
;
Respiratory Syncytial Viruses*
;
Respiratory System*
;
Respiratory Tract Infections*
4.Impact of Temperature on Influenza A Status during Global Warming Hiatus.
Biomedical and Environmental Sciences 2019;32(7):554-557
Adolescent
;
Adult
;
Aged
;
Aged, 80 and over
;
Animals
;
Birds
;
virology
;
Child
;
Child, Preschool
;
Global Warming
;
Humans
;
Infant
;
Influenza A virus
;
Influenza, Human
;
epidemiology
;
Middle Aged
;
Orthomyxoviridae Infections
;
epidemiology
;
Temperature
;
Young Adult
6.IFN-λ: A new spotlight in innate immunity against influenza virus infection.
Yeping SUN ; Jingwen JIANG ; Po TIEN ; Wenjun LIU ; Jing LI
Protein & Cell 2018;9(10):832-837
7.Innate and adaptive T cells in influenza disease.
Simone NÜSSING ; Sneha SANT ; Marios KOUTSAKOS ; Kanta SUBBARAO ; Thi H O NGUYEN ; Katherine KEDZIERSKA
Frontiers of Medicine 2018;12(1):34-47
Influenza is a major global health problem, causing infections of the respiratory tract, often leading to acute pneumonia, life-threatening complications and even deaths. Over the last seven decades, vaccination strategies have been utilized to protect people from complications of influenza, especially groups at high risk of severe disease. While current vaccination regimens elicit strain-specific antibody responses, they fail to generate cross-protection against seasonal, pandemic and avian viruses. Moreover, vaccines designed to generate influenza-specific T-cell responses are yet to be optimized. During natural infection, viral replication is initially controlled by innate immunity before adaptive immune responses (T cells and antibody-producing B cells) achieve viral clearance and host recovery. Adaptive T and B cells maintain immunological memory and provide protection against subsequent infections with related influenza viruses. Recent studies also shed light on the role of innate T-cells (MAIT cells, γδ cells, and NKT cells) in controlling influenza and linking innate and adaptive immune mechanisms, thus making them attractive targets for vaccination strategies. We summarize the current knowledge on influenza-specific innate MAIT and γδ T cells as well as adaptive CD8 and CD4 T cells, and discuss how these responses can be harnessed by novel vaccine strategies to elicit cross-protective immunity against different influenza strains and subtypes.
Adaptive Immunity
;
Animals
;
Cross Protection
;
Humans
;
Immunity, Innate
;
Influenza Vaccines
;
therapeutic use
;
Influenza, Human
;
immunology
;
Orthomyxoviridae
;
immunology
;
Orthomyxoviridae Infections
;
immunology
;
T-Lymphocytes
;
immunology
;
Vaccination
8.Review on the etiological property of the swine influenza virus.
Ning DU ; Xiao-Xing YANG ; Min WANG ; Yu LAN ; Lei YANG ; Yan-Hui CHENG ; Li-Qi LIU ; Yong-Kun CHEN ; Yuan-Ji GUO ; De-Xin LI ; Yue-Long SHU
Chinese Journal of Virology 2009;25 Suppl():39-47
9.Maxing Shigan Decoction improves lung and colon tissue damage caused by influenza virus infection through JAK1/2-STAT1 signaling pathway.
Cheng ZHAO ; Xiang-Gang ZHANG ; Chun-Jing CHEN ; Xiao-Qi WANG ; Kai-Qin CHEN ; Chang LIU ; Rong XIAO ; Li HE ; Mei-Hong PENG ; Fang-Guo LU
China Journal of Chinese Materia Medica 2022;47(19):5306-5315
Based on Janus kinase 1/2-signal transducer and activator of transcription 1(JAK1/2-STAT1) signaling pathway, this study explored the immune mechanism of Maxing Shigan Decoction in alleviating the lung tissue and colon tissue damage in mice infected with influenza virus. The influenza virus infection was induced in mice by nasal drip of influenza virus. The normal group, model group, oseltamivir group, antiviral granule group, and Maxing Shigan Decoction group were designed. After intragastric administration of corresponding drugs or normal saline for 3 or 7 days, the body mass was measured, and lung index, spleen index, and thymus index were calculated. Based on hematoxylin-eosin(HE) staining, the pathological changes of lung tissue and colon tissue were observed. Enzyme-linked immunosorbent assay(ELISA) was used to detect serum levels of inflammatory factors interleukin-8(IL-8) and interferon-γ(IFN-γ), Western blot and real-time quantitative polymerase chain reaction(RT-qPCR) to determine the protein and mRNA levels of JAK1, JAK2, STAT1, interferon regulatory factor 9(IRF9), and IFN-γ in lung tissue and colon tissue. The results showed that after 3 and 7 days of administration, the body mass, spleen index, and thymus index were lower(P<0.05 or P<0.01), and the lung index was higher(P<0.01) in the model group than in the normal group. Moreover, the model group showed congestion, edema, and infiltration of a large number of lymphocytes and macrophages in the lung tissue, irregular structure of colon mucosa, ulceration and shedding of epithelial cells, and infiltration of a large number of inflammatory cells. The model group had higher levels of serum IFN-γ(P<0.01), higher protein and mRNA expression of JAK1, JAK2, STAT1, IRF9, IFN-γ in lung tissue(P<0.05 or P<0.01), higher level of JAK2 protein in colon tissue(P<0.01), and higher protein and mRNA levels of STAT1 and IRF9(P<0.05 or P<0.01) than the normal group. Compared with the model group, Maxing Shigan Decoction group had high body mass, spleen index, and thymus index(P<0.05 or P<0.01), low lung index(P<0.05 or P<0.01), and significant alleviation of pathological injury in lung and colon. Moreover, lower serum level of IFN-γ(P<0.05 or P<0.01), protein and mRNA levels of JAK1, JAK2, STAT1, IRF9, and IFN-γ in lung tissue(P<0.05 or P<0.01), JAK2 protein level in colon tissue(P<0.01), and protein and mRNA levels of STAT1 and IRF9(P<0.05 or P<0.01) were observed in the Maxing Shigan Decoction group than in the model group. After 3 days of administration, the level of serum IL-8 in the model group was significantly higher than that in the normal group(P<0.01), and the level in the Maxing Shigan Decoction group was significantly reduced(P<0.01). In conclusion, Maxing Shigan Decoction can significantly up-regulate body mass, spleen index, and thymus index, down-regulate lung index, reduce the levels of IL-8 and IFN-γ, and down-regulate protein and mRNA levels of JAK1, JAK2, STAT1, IRF9, and IFN-γ in lung tissue and protein and mRNA levels of JAK2, STAT1, and IRF9 in colon tissue, and alleviate pathological damage of lung tissue and colon tissue. The mechanism is the likelihood that it inhibits the activation of JAK1/2-STAT1 signaling pathway to alleviate the damage to lung and colon tissue damage.
Mice
;
Animals
;
Humans
;
Janus Kinase 1/genetics*
;
STAT1 Transcription Factor/genetics*
;
Influenza, Human
;
Interleukin-8
;
Signal Transduction
;
Orthomyxoviridae Infections
;
Interferon-gamma
;
Lung
;
RNA, Messenger
;
Orthomyxoviridae
;
Colon
10.Constrictive Pericarditis Accompanied by Swine-Origin Influenza A (H1N1) Infection.
Ji Yong JANG ; Hyuk Jae CHANG ; Yangsoo JANG ; Sang Hoon HAN ; Woo Dae BANG ; Sung Soo CHO ; Chang Myung OH ; Hee Tae YU ; Chi Young SHIM ; Jong Won HA ; Namsik CHUNG
Korean Circulation Journal 2010;40(10):539-542
Swine-origin influenza A (H1N1) is caused by a new strain of the influenza virus. The disease has spread rapidly and was declared a pandemic in April, 2009. So far, however, there is a scarcity of information regarding the complications of swine influenza. A report of the disease in the winter of 2009 in the Southern Hemisphere found that the most common manifestations of influenza A virus infection are upper respiratory tract infection and pneumonia. Although there may be an association between fulminant myocarditis and Swine influenza, cardiovascular complications resulting from swine Influenza A infection are exceedingly rare. We report a case of acute constrictive pericarditis in a healthy subject infected by the swine-origin influenza A (H1N1) virus.
Influenza A virus
;
Influenza, Human
;
Myocarditis
;
Orthomyxoviridae
;
Pandemics
;
Pericarditis, Constrictive
;
Pneumonia
;
Respiratory Tract Infections
;
Sprains and Strains
;
Swine
;
Viruses