1.Inhibitory effect of medicinal plant-derived carboxylic acids on the human transporters hOAT1, hOAT3, hOATP1B1, and hOATP2B1.
Zhi-Yu ZHANG ; Duan-Yun SI ; Xiu-Lin YI ; Chang-Xiao LIU
Chinese Journal of Natural Medicines (English Ed.) 2014;12(2):131-138
A significant number of organic carboxylic acids have been shown to influence the absorption and distribution of drugs mediated by organic anion transporters (OATs). In this study, uptake experiments were performed to assess the inhibitory effects of cinnamic acid, ferulic acid, oleanolic acid, deoxycholic acid, and cynarin on hOAT1, hOAT3, hOATP1B1, and hOATP2B1. After a drug-drug interaction (DDI) investigation, cinnamic acid, ferulic acid, deoxycholic acid, and cynarin were found and validated to inhibit hOAT1 in a competitive manner, and deoxycholic acid was found to be an inhibitor of all four transporters. The apparent 50% inhibitory concentrations of cinnamic acid, ferulic acid, deoxycholic acid, and cynarin were estimated to be 133.87, 3.69, 90.03 and 6.03 μmol·L(-1) for hOAT1, respectively. The apparent 50% inhibitory concentrations of deoxycholic acid were estimated to be 9.57 μmol·L(-1) for hOAT3, 70.54 μmol·L(-1) for hOATP1B1, and 168.27 μmol·L(-1) for hOATP2B1. Because cinnamic acid, ferulic acid, and cynarin are ingredients of food or food additives, the present study suggests there are new food-drug interactions to be disclosed. In addition, deoxycholic acid may be used as a probe for studying the correlation of OATs and OATPs.
Carboxylic Acids
;
pharmacology
;
Cinnamates
;
pharmacology
;
Coumaric Acids
;
pharmacology
;
Deoxycholic Acid
;
pharmacology
;
Diet
;
Drug Interactions
;
HEK293 Cells
;
Humans
;
Organic Anion Transport Protein 1
;
antagonists & inhibitors
;
Organic Anion Transporters
;
antagonists & inhibitors
;
Plant Extracts
;
pharmacology
;
Plants, Medicinal
;
chemistry
2.Co-localization and interaction of organic anion transporter 1 with caveolin-2 in rat kidney.
Jin Oh KWAK ; Hyun Woo KIM ; Kwang Jin OH ; Dong Su KIM ; Ki Ok HAN ; Seok Ho CHA
Experimental & Molecular Medicine 2005;37(3):204-212
The organic anion transporters (OAT) have recently been identified. Although the some transport properties of OATs in the kidney have been verified, the regulatory mechanisms for OAT's functions are still not fully understood. The rat OAT1 (rOAT1) transports a number of negatively charged organic compounds between the cells and their extracellular milieu. Caveolin (Cav) also plays a role in membrane transport. Therefore, we investigated the protein-protein interactions between rOAT1 and caveolin-2. In the rat kidney, the expressions of rOAT1 mRNA and protein were observed in both the cortex and the outer medulla. With respect to Cav-2, the expressions of mRNA and protein were observed in all portions of the kidney (cortex < outer medulla = inner medulla). The results of Western blot analysis using the isolated caveolae-enriched membrane fractions or the immunoprecipitates by respective antibodies from the rat kidney showed that rOAT1 and Cav-2 co-localized in the same fractions and they formed complexes each other. These results were confirmed by performing confocal microscopy with immunocytochemistry using the primary cultured renal proximal tubular cells. When the synthesized cRNA of rOAT1 along with the antisense oligodeoxynucleotides of Xenopus Cav-2 were co-injected into Xenopus oocytes, the [14C]p-aminohippurate and [3H]methotrexate uptake was slightly, but significantly decreased. The similar results were also observed in rOAT1 over-expressed Chinese hamster ovary cells. These findings suggest that rOAT1 and caveolin-2 are co-expressed in the plasma membrane and rOAT1's function for organic compound transport is upregulated by Cav-2 in the normal physiological condition.
Animals
;
Biological Transport, Active/*physiology
;
CHO Cells
;
Caveolins/*metabolism
;
Cell Membrane/*metabolism
;
Cells, Cultured
;
Hamsters
;
Immunoprecipitation
;
Kidney Tubules, Proximal/*metabolism
;
Methotrexate/metabolism
;
Microscopy, Confocal
;
Oligonucleotides, Antisense/pharmacology
;
Oocytes/metabolism
;
Organic Anion Transport Protein 1/antagonists & inhibitors/genetics/*metabolism
;
RNA, Complementary/metabolism
;
RNA, Messenger/genetics/metabolism
;
Rats
;
Research Support, Non-U.S. Gov't
;
Xenopus laevis/metabolism
;
p-Aminohippuric Acid/metabolism