1.Some observations on the organelles participating in the biliary excretion in the rat hepatocytes.
Korean Journal of Anatomy 1991;24(1):3-18
No abstract available.
Animals
;
Hepatocytes*
;
Organelles*
;
Rats*
2.Morphological analysis of autophagy.
Acta Pharmaceutica Sinica 2016;51(1):39-44
Autophagy is an important homeostatic cellular recycling mechanism responsible for degrading injured or dysfunctional subcellular organelles and proteins in all living cells. The process of autophagy can be divided into three relatively independent steps: the initiation of phagophore, the formation of autophagosome and the maturation/degradation stage. Different morphological characteristics and molecular marker changes can be observed at these stages. Morphological approaches are useful to produce novel knowledge that would not be achieved through other experimental methods. Here we summarize the morphological methods in monitoring autophagy, the principles in data interpretation and the cautions that should be considered in the study of autophagy.
Autophagy
;
Homeostasis
;
Humans
;
Organelles
;
Phagosomes
3.Autophagy in Mycobacterium abscessus Infection.
Bindu SUBHADRA ; Chul Hee CHOI
Journal of Bacteriology and Virology 2017;47(3):122-131
Autophagy is a self-degradative process that removes misfolded or aggregated proteins, clears damaged organelles, as well as eliminates intracellular pathogens playing a role in innate immunity. Mycobacterium abscessus (M. abscessus) has been reported as a causative organism in nearly 80% of the rapid growing mycobacteria (RGM) pulmonary disease. The strain exhibits two different colony types: the smooth (S) one which is considered wild-type and the rough (R) one which is the mutated strain. In accordance to the colony morphology, the S and R types display varying autophagic responses in the host cells with the R type inducing elevated autophagy compared to the S type. The major difference in the autophagy could be based on the bioactive molecules exposed on the surface of the S and R types. Though autophagy has a vital role to play in the clearance of intracellular pathogens, very little is known on the autophagy induced by M. abscessus. It has been known that the intracellular pathogens employ different strategies to evade the autophagic pathway and to survive within the host cells. This review summarizes the most up-to-date findings on autophagy induced by M. abscessus morphotypes and how M. abscessus evades the autophagic machinery to divide and thrive inside the host cells. In addition, the prospects of autophagic machinery in devising new anti-infective strategies against mycobacterial infection is also been discussed.
Autophagy*
;
Immunity, Innate
;
Lung Diseases
;
Mycobacterium*
;
Organelles
4.Autophagy in Mycobacterium abscessus Infection.
Bindu SUBHADRA ; Chul Hee CHOI
Journal of Bacteriology and Virology 2017;47(3):122-131
Autophagy is a self-degradative process that removes misfolded or aggregated proteins, clears damaged organelles, as well as eliminates intracellular pathogens playing a role in innate immunity. Mycobacterium abscessus (M. abscessus) has been reported as a causative organism in nearly 80% of the rapid growing mycobacteria (RGM) pulmonary disease. The strain exhibits two different colony types: the smooth (S) one which is considered wild-type and the rough (R) one which is the mutated strain. In accordance to the colony morphology, the S and R types display varying autophagic responses in the host cells with the R type inducing elevated autophagy compared to the S type. The major difference in the autophagy could be based on the bioactive molecules exposed on the surface of the S and R types. Though autophagy has a vital role to play in the clearance of intracellular pathogens, very little is known on the autophagy induced by M. abscessus. It has been known that the intracellular pathogens employ different strategies to evade the autophagic pathway and to survive within the host cells. This review summarizes the most up-to-date findings on autophagy induced by M. abscessus morphotypes and how M. abscessus evades the autophagic machinery to divide and thrive inside the host cells. In addition, the prospects of autophagic machinery in devising new anti-infective strategies against mycobacterial infection is also been discussed.
Autophagy*
;
Immunity, Innate
;
Lung Diseases
;
Mycobacterium*
;
Organelles
5.Vesicular transport with emphasis on exocytosis.
Yonsei Medical Journal 1994;35(4):355-377
The eukaryotic cell is compartmentalized by a series of vesicular organelles which constitute the endocytic and exocytic transport pathways. Each vesicular compartment has distinct sets of membrane proteins, structures and functions. Despite continuous vesicular transport, each vesicular compartment maintains its structure and function by use of retention and retrieval signal for its own resident proteins. Proteins in transit along the endocytic and exocytic pathway are transported without admixing with cytoplasmic constituents by successive steps of budding from the donor vesicles, formation of intermediate transport vesicles, transport, targeting to and fusion with acceptor vesicles. Specificity and fidelity of the vesicular transport are conferred by vesicular membrane proteins and small molecular weight GTP-binding proteins of the Rab subfamily. Proteins for export are packaged into specific vesicles for their final destinations. Insertion into and retrieval from the plasma membrane of transport proteins in response to cellular stimulus are a new paradigm of cellular regulatory mechanism. Secretion of neurotransmitters, hormones and enzymes by exocytosis involves a complex set of cytosolic proteins, G-proteins, proteins on the secretory granule membrane and plasma membrane. Much progress has been recently made in identifying proteins and factors involved in the exocytosis. But the molecular interactions among identified proteins and regulatory factors are unknown and remain to be elucidated. Finally our chemiosmotic hypothesis which involves the H+ electrochemical gradient across the secretory granule membrane generated by an ATP-dependent electrogenic H(+)-ATPase as the potential driving force for fusion and release of granule contents will be discussed.
Biological Transport
;
*Exocytosis
;
Human
;
Organelles/*metabolism
;
Support, Non-U.S. Gov't
6.Ultrastructural Feature of Proximal Convoluted Tubular Cells of Rat Induced by Gentamicin.
Byoung Yuk LEE ; Tae Jung SHON ; Jong Min CHAE
Korean Journal of Pathology 1998;32(1):43-50
Myeloid body formation is an ultrastructural feature of gentamicin induced nephrotoxicity in human being and experimental animals. The origin of the myeloid body is not satisfactorily understood and morphological verification of the developing process of this structure is not fully accomplished. We injected 100 mg/kg/12 hour of gentamicin in 20 Spraque-Dawley rats and examined the ultrastructural feature of the proximal convoluted tubular cells of the kidney every 30 minutes in the first 4 hours, and in 5 hours, 6 hours, 12 hours, 24 hours and 48 hours after injection of gentamicin, with a TEM and a SEM. Myeloid bodies were noted as concentric layers of membranous structures of degenerated endoplasmic reticulum and mitochondria in the lysosome. The number and size of the myeloid body containing lysosomes were increased with time. We can deduce from this observation that injured cell organelles by diffusible gentamicin within the cells are autophagocytosed by lysosomes which were also injured by the drug from pinocytotic vesicles, and incompletely digested organellar remnants are retained in the lysosomes as myeloid bodies. So we think that the myeloid body formation is a result of an exaggerated and a pathologic autophagocytic process due to cell injury induced by gentamicin.
Animals
;
Endoplasmic Reticulum
;
Gentamicins*
;
Humans
;
Kidney
;
Lysosomes
;
Mitochondria
;
Organelles
;
Rats*
7.Advances in the study of organelles targeting nanocarriers.
Xiao-Yi SUN ; Li-Li WEI ; Hai-Liang CHEN ; Wen-Quan LIANG
Acta Pharmaceutica Sinica 2009;44(8):838-844
Modern drug delivery system demands high therapeutic efficacy and low toxicity which depends on efficient intracellular transportation of therapeutics to specific organisms, cells, even targeted organelles such as cytosol, nucleus, mitochondria, lysosome and endoplasmic reticulum. Intracellular barriers which prevent drug molecules accessing to their targets mainly include cell membrane, lysosomal degradation and the endomembrane system. Nanocarriers can preserve the bioactivities of protein, enzyme and DNA, and also they are easy to be modified and functionalized. In this paper, we summarized the intracellular fate of nanocarriers, especially how to bypass intracellular barriers and then target cytosol, nucleus, mitochondria, lysosome and endoplasmic reticulum by pharmaceutical modifications.
Animals
;
Drug Carriers
;
Drug Delivery Systems
;
Humans
;
Nanoparticles
;
Organelles
8.The Interplay between Autophagy and Aging.
Jong Ok PYO ; Seung Min YOO ; Yong Keun JUNG
Diabetes & Metabolism Journal 2013;37(5):333-339
Numerous studies have established a link between autophagy and aging; however, the relationship has not been clearly defined. Aging is a very complex process caused by the accumulation of various factors due to the gradual failure of cellular maintenance. Recent studies have shown that autophagy reduces the stress responses induced by starvation, reactive oxygen species, and the accumulation of intracellular proteins and organelles through cytoprotection, clearance of damaged mitochondria, and lysosomal degradation. Here, we summarize our current understanding of the relationship between autophagy and the aging process.
Aging*
;
Autophagy*
;
Caloric Restriction
;
Cytoprotection
;
Mitochondria
;
Organelles
;
Proteins
;
Reactive Oxygen Species
;
Starvation
9.The Interplay between Autophagy and Aging.
Jong Ok PYO ; Seung Min YOO ; Yong Keun JUNG
Diabetes & Metabolism Journal 2013;37(5):333-339
Numerous studies have established a link between autophagy and aging; however, the relationship has not been clearly defined. Aging is a very complex process caused by the accumulation of various factors due to the gradual failure of cellular maintenance. Recent studies have shown that autophagy reduces the stress responses induced by starvation, reactive oxygen species, and the accumulation of intracellular proteins and organelles through cytoprotection, clearance of damaged mitochondria, and lysosomal degradation. Here, we summarize our current understanding of the relationship between autophagy and the aging process.
Aging*
;
Autophagy*
;
Caloric Restriction
;
Cytoprotection
;
Mitochondria
;
Organelles
;
Proteins
;
Reactive Oxygen Species
;
Starvation
10.Evaluation of Cysticidal Effects of Contact Lens Disinfectant on Acanthamoeba Isolates.
Ji Eun LEE ; Jae Sung PARK ; Jong Soo LEE ; Hak Sun YOO
Journal of the Korean Ophthalmological Society 2007;48(3):431-437
PURPOSE: To evaluate the cysticidal effect of 5 kinds of commercially available contact lens disinfectants against 2 clinical isolates of Acanthamoeba. METHODS: Five kinds of commercially available contact lens disinfectants were soaked with cysts of Acanthamoeba ludgdunesis and castellanii at the concentration of 10(3), 10(4), and 10(5) cells/ml for 1 and 4 or 6 hours. Cysts which were not excysted in 7 days after treatment were recognized to be killed. Morphologic changes were evaluated by electron microscopic observation. RESULTS: Contact lens disinfectants which contain myristamidopropyl dimethylamine (MAPD) showed the best cysticidal effect. These disinfectants demonstrated a cysticidal effect on both Acanthamoeba species of all concentrations in 6-hour treatment. Contact lens disinfectants which contain polyhexamethylene biguanide (PHMB) did not demonstrate cysticidal effect, except for Acanthamoeba castellanii at the concentration of 10(3) cells/ml, in either 4- or 6-hour treatment. Separation of plasma membrane from endocyst and damage of organelles were prominent in cases showing a cysticidal effect. CONCLUSIONS: Contact lens disinfectant which contains MAPD may be helpful in preventing the Acanthamoeba keratitis. A higher concentration of PHMB is required to be effective in preventing Acanthamoeba keratitis.
Acanthamoeba castellanii
;
Acanthamoeba Keratitis
;
Acanthamoeba*
;
Cell Membrane
;
Contact Lens Solutions
;
Disinfectants
;
Organelles