1.Usefulness of a Small-Field Digital Mammographic Imaging System Using Parabolic Polycapillary Optics as a Diagnostic Imaging Tool: a Preliminary Study.
Kwon Su CHON ; Jeong Gon PARK ; Hyun Hwa SON ; Sung Hoon KANG ; Seong Hoon PARK ; Hye won KIM ; Hun Soo KIM ; Kwon Ha YOON
Korean Journal of Radiology 2009;10(6):604-612
OBJECTIVE: To evaluate the efficacy for spatial resolution and radiation dose of a small-field digital mammographic imaging system using parabolic polycapillary optics. MATERIALS AND METHODS: We developed a small-field digital mammographic imaging system composed of a CCD (charge coupled device) detector and an X-ray source coupled with parabolic polycapillary optics. The spatial resolution and radiation dose according to various filters were evaluated for a small-field digital mammographic imaging system. The images of a test standard phantom and breast cancer tissue sample were obtained. RESULTS: The small-field digital mammographic imaging system had spatial resolutions of 12 lp/mm with molybdenum and rhodium filters with a 25-micrometer thickness. With a thicker molybdenum filter (100 micrometer thick), the system had a higher spatial resolution of 11 lp/mm and contrast of 0.48. The radiation dose for a rhodium filter with a 25-micrometer thickness was 0.13 mGy within a 10-mm-diameter local field. A larger field image greater than 10 mm in diameter could be obtained by scanning an object. On the small-field mammographic imaging system, microcalcifications of breast cancer tissue were clearly observed. CONCLUSION: A small-field digital mammographic imaging system with parabolic polycapillary optics may be a useful diagnostic tool for providing high-resolution imaging with a low radiation dose for examination of local volumes of breast tissue.
Equipment Design
;
Humans
;
Mammography/*instrumentation
;
Molybdenum
;
Optics and Photonics/*instrumentation
;
Phantoms, Imaging
;
Radiographic Image Enhancement/*instrumentation
;
Rhodium
2.Progress in research and application of time-resolved optoacoustic method in biomedicine.
Fenlan LI ; Kexin XU ; Ruikang WANG
Journal of Biomedical Engineering 2006;23(6):1371-1374
Based on optoacoustic effect, time-resolved optoacoustic technique effectively combines optical technology with acoustic technology and partly overcomes the biological tissue's scatter characteristics which might influence the results of measurement. Optoacoustic technique has the advantages of high sensitivity and high resolution and has been widely applied in biomedicine field. In this paper, the measuring principles, the key technique, application and future direction of this technique are synthetically reviewed to promote the research in theory and application in the future.
Acoustics
;
Image Interpretation, Computer-Assisted
;
Optics and Photonics
;
methods
;
Oxygen
;
blood
;
Photochemotherapy
;
instrumentation
;
Tomography
;
methods
3.Measuring rupture forces of P-selectin/PSGL-1 bonds using an optical trap assay.
Yan ZHANG ; Zhiyi YE ; Bo HUO ; Ganyun SUN ; Mian LONG
Journal of Biomedical Engineering 2005;22(5):961-965
Selectin/ligand interaction plays an important role in such biological processes as inflammatory reaction, tumor metastasis, etc. External forces affect dissociation of receptor-ligand bonds. A novel approach, upon optical trap technique, was developed in this study to investigate the dissociation of P-selectin/PSGL-1 (P-Selectin Glycoprotein Ligand 1) bindings. Stiffness of optical trap was calibrated with laser power using a viscous drag method. While P-selectin and PSGL-1 molecules were functionally coated on surfaces of glass beads, respectively, the dissociation of interacting molecule bond was studied by measuring the rupture force distribution. It was found that most probable rupture force increased with loading rate at < 25 pN/s. These results complemented and validated the current theory at low loading rates.
Humans
;
Membrane Glycoproteins
;
chemistry
;
Optics and Photonics
;
instrumentation
;
Protein Binding
;
Protein Structure, Tertiary
4.A non-invasive glucose measurement method based on orthogonal twin-polarized light and its pilot experimental investigation.
Hong WANG ; Baoming WU ; Ding LIU
Journal of Biomedical Engineering 2010;27(2):278-282
In order to overcome the existing shortcomings of the non-invasive blood glucose polarized light measurement methods of optical heterodyne detection and direct detection, we present in this paper a new orthogonal twin-polarized light (OTPL) non-invasive blood glucose measurement method, which converts the micro-angle rotated by an optical active substance such as glucose to the energy difference of OTPL, amplifies the signals by the high-sensitivity lock-in amplifier made of relevant principle, controls Faraday coil current to compensate the changes in deflection angle caused by blood glucose, and makes use of the linear relationship between blood glucose concentration and Faraday coil current to calculate blood glucose concentration. In our comparative experiment using the data measured by LX-20 automatic biochemical analyzer as a standard, a 0.9777 correlation coefficient is obtained in glucose concentration experiment, and a 0.952 in serum experiment. The result shows that this method has higher detection sensitivity and accuracy and lays a foundation for the development of practical new type of non-invasive blood glucose tester for diabetic patients.
Animals
;
Blood Glucose
;
analysis
;
Blood Glucose Self-Monitoring
;
instrumentation
;
methods
;
Diabetes Mellitus
;
blood
;
Humans
;
Optical Rotation
;
Optics and Photonics
;
Pilot Projects
;
Polarography
;
Rabbits