1.Progress in research of norovirus.
Jia-Dong WANG ; Jun FANG ; Xiao-Hui HAN
Chinese Journal of Virology 2008;24(5):409-413
2.Genome structure and variation of Reynoutria japonica Houtt. chloroplast genome.
Mengtao SUN ; Junxin ZHANG ; Tiran HUANG ; Mingfeng YANG ; Lanqing MA ; Liusheng DUAN
Chinese Journal of Biotechnology 2022;38(5):1953-1964
Reynoutria japonica Houtt., belonging to Polygoneae of Polygonaceae, is a Chinese medicinal herb with the functions of draining dampness and relieving jaundice, clearing heat and detoxifying, dispersing blood stasis and relieving pain, and relieving cough and resolving phlegm. In this study, we carried out high-throughput sequencing for the chloroplast genome sequences of five cultivars of R. japonica and analyzed the genome structure and variations. The chloroplast genomes of the five R. japonica cultivars had two sizes (163 376 bp and 163 371 bp) and a typical circular tetrad structure composed of a large single-copy (LSC) region of 85 784 bp, a small single-copy (SSC) region of 18 616 bp, and a pair of inverted repeat (IR) regions (IRa/IRb) which are spaced apart. A total of 161 genes were obtained by annotation, which consisted of 106 protein-coding genes, 10 rRNA-coding genes, and 45 tRNA-coding genes. The total GC content was 36.7%. Specifically, the GC content in the LSC, SSC, and IR regions were 34.8%, 30.7%, and 42.7%, respectively. Comparison of the whole chloroplast genome among the five cultivars showed that trnk-UUU, rpoC1, petD, rpl16, ndhA, and rpl12 in coding regions had sequence variations. In the phylogenetic tree constructed for the 11 samples of Polygoneae, the five cultivars of R. japonica clustered into one clade near the root and was a sister group of Fallopia multiflora (Thunb.).
Base Composition
;
Genome, Chloroplast/genetics*
;
Open Reading Frames
;
Phylogeny
;
Reynoutria
3.Micropeptides: origins, identification, and potential role in metabolism-related diseases.
Yirui LU ; Yutong RAN ; Hong LI ; Jiao WEN ; Xiaodong CUI ; Xiaoyun ZHANG ; Xiumei GUAN ; Min CHENG
Journal of Zhejiang University. Science. B 2023;24(12):1106-1122
With the development of modern sequencing techniques and bioinformatics, genomes that were once thought to be noncoding have been found to encode abundant functional micropeptides (miPs), a kind of small polypeptides. Although miPs are difficult to analyze and identify, a number of studies have begun to focus on them. More and more miPs have been revealed as essential for energy metabolism homeostasis, immune regulation, and tumor growth and development. Many reports have shown that miPs are especially essential for regulating glucose and lipid metabolism and regulating mitochondrial function. MiPs are also involved in the progression of related diseases. This paper reviews the sources and identification of miPs, as well as the functional significance of miPs for metabolism-related diseases, with the aim of revealing their potential clinical applications.
Humans
;
Open Reading Frames
;
Peptides
;
Glucose
;
Genome
;
Metabolic Diseases
4.Expression of Human Papillomavirus Type 16, Prototype and Natural Variant E7 Proteins using Baculovirus Expression System.
Hee Sung HAN ; Sun Ho KEE ; Hyung Jun KIM ; Kyung A CHO ; Yoon Won KIM ; Min Kee CHO ; Woo Hyun CHANG ; Soon Bong HWANG
Journal of the Korean Society of Virology 1998;28(1):53-62
Human papillomavirus (HPV) 16, E7 proteins derived from the prototype (Bac73) and natural variant (Bac101) E7 open reading frame were produced in Sf9 insect cells. The variant E7 gene occurred naturally by substitution mutation at the position of 88 nucleotide, resulting serine instead of asparagine. Using E7 specific monoclonal antibody (VD6), both E7 proteins were identified in recombinant baculovirus infected SF9 cells. Radiolabelling and immunoprecipitation analysis revealed that both E7 proteins were phosphoproteins. Immunostaining result showed that E7 proteins were mainly localized in the cytoplasm. Nuclear form of E7 proteins was also detected after a sequential fractionation procedure for removing chromatin structure. Considering that the VD6 recognition site in E7 protein is located within 10 amino acid at the N-terminus, this region appears to be blocked by the nuclear component. Western blot analysis revealed that nuclear form was more abundant than cytoplasmic E7 proteins. Time course immunostaining showed that the primary location of E7 protein was the nucleus and exported to the cytoplasm as proteins were accumulated. These events occurred similarly in both Bac73 and Bac101 infected Sf9 cells, suggesting that these two proteins may have similar biological functions.
Asparagine
;
Baculoviridae*
;
Blotting, Western
;
Chromatin
;
Cytoplasm
;
Humans*
;
Immunoprecipitation
;
Insects
;
Open Reading Frames
;
Phosphoproteins
;
Serine
;
Sf9 Cells
5.Complete genome sequences of the SARS-CoV: the BJ Group (Isolates BJ01-BJ04).
Shengli BI ; E'de QIN ; Zuyuan XU ; Wei LI ; Jing WANG ; Yongwu HU ; Yong LIU ; Shumin DUAN ; Jianfei HU ; Yujun HAN ; Jing XU ; Yan LI ; Yao YI ; Yongdong ZHOU ; Wei LIN ; Hong XU ; Ruan LI ; Zizhang ZHANG ; Haiyan SUN ; Jingui ZHU ; Man YU ; Baochang FAN ; Qingfa WU ; Wei LIN ; Lin TANG ; Baoan YANG ; Guoqing LI ; Wenming PENG ; Wenjie LI ; Tao JIANG ; Yajun DENG ; Bohua LIU ; Jianping SHI ; Yongqiang DENG ; Wei WEI ; Hong LIU ; Zongzhong TONG ; Feng ZHANG ; Yu ZHANG ; Cui'e WANG ; Yuquan LI ; Jia YE ; Yonghua GAN ; Jia JI ; Xiaoyu LI ; Xiangjun TIAN ; Fushuang LU ; Gang TAN ; Ruifu YANG ; Bin LIU ; Siqi LIU ; Songgang LI ; Jun WANG ; Jian WANG ; Wuchun CAO ; Jun YU ; Xiaoping DONG ; Huanming YANG
Genomics, Proteomics & Bioinformatics 2003;1(3):180-192
Beijing has been one of the epicenters attacked most severely by the SARS-CoV (severe acute respiratory syndrome-associated coronavirus) since the first patient was diagnosed in one of the city's hospitals. We now report complete genome sequences of the BJ Group, including four isolates (Isolates BJ01, BJ02, BJ03, and BJ04) of the SARS-CoV. It is remarkable that all members of the BJ Group share a common haplotype, consisting of seven loci that differentiate the group from other isolates published to date. Among 42 substitutions uniquely identified from the BJ group, 32 are non-synonymous changes at the amino acid level. Rooted phylogenetic trees, proposed on the basis of haplotypes and other sequence variations of SARS-CoV isolates from Canada, USA, Singapore, and China, gave rise to different paradigms but positioned the BJ Group, together with the newly discovered GD01 (GD-Ins29) in the same clade, followed by the H-U Group (from Hong Kong to USA) and the H-T Group (from Hong Kong to Toronto), leaving the SP Group (Singapore) more distant. This result appears to suggest a possible transmission path from Guangdong to Beijing/Hong Kong, then to other countries and regions.
Genome, Viral
;
Haplotypes
;
Humans
;
Mutation
;
Open Reading Frames
;
Phylogeny
;
SARS Virus
;
genetics
6.Research progress in functions of coronavirus accessory genes.
Chinese Journal of Virology 2014;30(3):325-332
In addition to the structural genes of the coronavirus genome, S, E, M, and N, there are several additional genes called "group-specific or accessory genes". Their gene products are designated as "accessory proteins", as reports to date make it clear that these proteins are not essential for virus replication in vitro. Nevertheless, many of these genes are still maintained in the virus genome under selective pressure, suggesting that they might play a very important role in the survival of the virus in the natural environment of the infected host. This review will summarize the research progress in the functions of coronavirus accessory genes.
Animals
;
Coronavirus
;
genetics
;
metabolism
;
Coronavirus Infections
;
virology
;
Humans
;
Open Reading Frames
;
Viral Proteins
;
metabolism
7.Promotive effect of LRP16 gene on proliferation of K562 cells.
Bo YANG ; Xue-Chun LU ; Xiao-Hua CHI ; Wei-Dong HAN ; Li YU ; Fang-Ding LOU
Journal of Experimental Hematology 2009;17(5):1154-1158
The study was aimed to investigate the promotive effect of LRP16 gene on K562 cell proliferation. Open reading frame of LRP16 gene was amplified using reverse transcription-polymerase chain reaction (RT-PCR) and ligated to pGEM-T plasmid to construct LRP16 ORF-pGEM-T recombinant vector. Then, LRP16 ORF identified by sequencing was inserted into pcDNA3.1+ plasmid to construct LRP16 ORF-pcDNA3.1+ recombinant expression plasmid which was transfected into K562 cell lines to make overexpression of LRP16 gene in K562 cells. Survival of cells was determined by MTT assay and growth curve of cells was drawn, the cell cycle was detected by flow cytometry. The results showed that LRP16 ORF was successfully amplified, then the LRP16 ORF-pcDNA3.1+ recombinant plasmid was constructed. The K562 cell line with overexpression of LRP16 gene was established. The promotive effect of LRP16 gene overexpression on proliferation of K562 cells was observed and the effect partially related to the enhancement of cells from G0 to S phase induced by LRP16 gene. It is concluded that LRP16 gene overexpression shows a promotive effect on proliferation of K562 cells.
Cell Proliferation
;
Genetic Vectors
;
Humans
;
K562 Cells
;
Neoplasm Proteins
;
genetics
;
Open Reading Frames
;
Plasmids
8.Localization of functional domains of HEV ORF1 in cells.
Hui HUANG ; Zi-Zheng ZHENG ; Min ZHAO ; Jing-Xian LI ; Wang-Sheng LAI ; Ji MIAO ; Jun ZHANG ; Ning-Shao XIA
Chinese Journal of Virology 2011;27(3):195-201
To investigate the expression and localization of various functional domains of ORF1 polyprotein and ORF3 protein of hepatitis E virus in host cells, the coding sequences of the various functional domains (RdRp, HEL, MET, PLP, X) of ORF1 were separately cloned into pcDNA3. 1-GFP vectors for constructing the recombinant plasmids which were verified by enzyme digestion and sequencing. The exact expression of the fusion proteins were detected by Western Blot, and the distribution and localization were observed by the laser scanning confocal microscope(LSCM). In huh7 cells, GFP-RdRp proteins were found mainly in the nuclei, GFP-HEL proteins were distributed vesicularly around the nucleus, GFP-MET proteins were distributed granularly both in the nuclei and the cytoplasm, GFP-PLP proteins had polar distribution around the nucleus, and unknown GFP-X proteins were distributed uniformly both in the nuclei and the cytoplasm. Different localization of these proteins verified the previous data obtained from in vitro studies, providing a support for further research on the biological functions of various proteins coded by HEV genome.
Blotting, Western
;
Cells, Cultured
;
Hepatitis E virus
;
genetics
;
Humans
;
Open Reading Frames
;
Viral Proteins
;
genetics
;
physiology
9.HExDB: Human EXon DataBase for Alternative Splicing Pattern Analysis.
Junghwan PARK ; Minho LEE ; Jong BHAK
Genomics & Informatics 2005;3(3):80-85
HExDB is a database for analyzing exon and splicing pattern information in Homo sapiens. HExDB is useful for specific purposes: 1) to design primers for exon amplification from cDNA and 2) to understand the change of ORFs by alternative splicing. HExDB was constructed by integrating data from AltExtron which is the computationally predicted exon database, Ensemble cDNA annotation, and Affymetrix genome tile published recently. Although it may contain false positive data, HExDB is good starting point due to its sensitivity. At present, there are as many as 2,046,519 exons stored in the HExDB. We found that 16.8% of the exons in the database was constitutive exons and 83.1% were novel gene exons.
Alternative Splicing*
;
Animals
;
DNA, Complementary
;
Ecthyma, Contagious
;
Exons*
;
Genome
;
Humans*
;
Open Reading Frames
10.Characterization of a Potential Pathogenicity Island of Enterotoxigenic Bacteroides fragilis (ETBF) Strains.
Journal of the Korean Society for Microbiology 1998;33(3):273-280
Enterotoxigenic B. pagilis (ETBF) strains which produce a 20 kDa zinc metalloprotease toxin (BFI) have been associated with diarrheal disease of animals and young children. Using B. pngilis toxin gene (bfi) from strain 86-5443-2-2 (piglet isolate) as a probe, the gene was identified in 74/77 human and animal ETBF strains but only 2/97 non-toxigenic B. fragilis (NTBF) strains. The region flanking bp was mapped with several restriction enzymes and 8 resriction fragments aacent to bft were used to probe colony blots of 77 KTBF and 97 NTBF strains. All 74 bft-positive ETBF strains hybridized to the 8 probes spanning a ca. 18 kb chromosomal region; however, this 18 kb region was absent in the 3 ETBF strains lacking p, and 47 of the 97 (48%) NTBF strains lacked the entire 18 kb region. Of note, the 2 NTBF strains containing btf did not have a ca. 12 kb region upstream of btfp. A ca. 9 kb fragment flanking the btf gene has been sequenced. Analysis of this data revealed several open reading frames (ORF) of which 3 are of particular interest (ORFs 1, 2 and 3). ORF1 and ORF3 encode proteins with significant homology to mobilization proteins, and ORF2 encodes a protein with significant homology to metalloprotease proteins, but only 50% similarity and 30% identity to BFf. These results suggest: 1) the btf genes are flanked by at least 18 kb of DNA largely unique to ETBF strains indicating a putative pathogenic island, 2) another metalloprotease protein present in ETBF strains may contribute to the pathogenicity and variable virulence of these diarrheagenic strains and 3) the pathogenic island may be mobiTized among different Bacteroides strains, and possibly among different species of intestinal bacteria.
Animals
;
Bacteria
;
Bacteroides fragilis*
;
Bacteroides*
;
Child
;
DNA
;
Genomic Islands*
;
Humans
;
Open Reading Frames
;
Virulence*
;
Zinc