1.Characterization of Achlya americana and A. bisexualis (Saprolegniales, Oomycota) Isolated from Freshwater Environments in Korea
Young Joon CHOI ; Seo Hee LEE ; Thuong TT NGUYEN ; Bora NAM ; Hyang Burm LEE
Mycobiology 2019;47(2):135-142
Many members of the Saprolegniales (Oomycete) cause mycoses and disorders of fishes, of which Achlya and Saprolegnia are most ubiquitous genera worldwide. During a survey of the diversity of freshwater oomycetes in Korea, we collected seven isolates of Achlya, for which morphological and molecular phylogenetic analyses enabled them to identify as Achlya americana and Achlya bisexualis. In Korea, only a species of Achlya, A. prolifera, has been previously found to cause seedling rot on rice (Oryza sativa), but none of the two species have been reported yet. Importantly, A. bisexualis was isolated from a live fish, namely rice fish (Oryzias sinensis), as well as freshwater, and this is the first report of Achlya-causing mycoses on freshwater fishes in Korea. The presence of A. americana and A. bisexualis on live fish in Korea should be closely monitored, as considering the well-known broad infectivity of these species it has the potential to cause an important emerging disease on aquaculture industry.
Achlya
;
Aquaculture
;
Fishes
;
Fresh Water
;
Korea
;
Mycoses
;
Oomycetes
;
Saprolegnia
;
Seedlings
2.Response of Achlya racemosa, A. proliferoides and Saprolegnia furcata to Sub-lethal Treatments of Amino Acids.
Mycobiology 2003;31(2):86-94
The effect of four sub-lethal concentrations (400, 800, 1,200 and 1,600 microg/ml) of three amino acids such as isoluecine, aspartic acid and phenylalanine on vegetative growth and sexual and asexual reproduction of Achlya racemosa, A. proliferoides and Saprolegnia furcata was investigated. The density of vegetative growth and diameters of vegetative colonies of species of the Oomycetes fungi decreased with rising the concentration of the applied amino acid. Vegetative hyphae of treated fungi almost appeared branched in case of S. furcata, thick in case of A. racemosa and distorted in case of A. proliferoides as compared with control. The different treatments with amino acids depressed both sporangial formation and discharge, which were dependent on the tested species of zoosporic fungi, the amino acid and its dosage. Phenylalanine was the most effective amino acid in inhibiting sporulation and S. furcata was the most sensitive fungal species. Aspartic acid and isoleucine stimulated germination of discharged spores through the formation of germlings. Gemmae formation by the three fungi was reduced at the low concentrations of amino acids and nearly missed at high concentrations. Sex organs (oogonia and antheridia) were affected partly; rudiment oogonia were observed at low concentrations (400 and 800 microg/ml) and disappeared at higher concentrations, whereas antheridial branch formation was stimulated as the fungi were treated with isoleucine and to some extent phenylalanine.
Achlya*
;
Amino Acids*
;
Aspartic Acid
;
Fungi
;
Germination
;
Hyphae
;
Isoleucine
;
Oogonia
;
Oomycetes
;
Phenylalanine
;
Reproduction, Asexual
;
Saprolegnia*
;
Spores
3.Effects of Some Amino Acids on Ammonia Secretion and Extracellular Protease Activity by Three Oomycetes in Synthetic Medium with or without Glucose.
Mycobiology 2005;33(1):23-29
The effects of different concentrations of three amino acids as carbon and or nitrogen sources on mycelial dry weights, changes in pH values of synthetic medium, ammonia secretion and extracellular protease activity by three zoosporic fungi, pathogens of fish and shellfish, were studied. As compared with the control, the addition of isoleucine and aspartic acid as nitrogen sources were generally stimulative for mycelial dry weight production whereas phenylalanine was inhibitory irrespective to the tested fungal species. When amino acids served as carbon and nitrogen sources, the mycelial dry weights of the three fungi were increased (mostly non-significantly) relative to untreated control but weights were decreased as the concentrations of the three amino acids raised. The addition of individual amino acids as carbon and nitrogen sources to the medium significantly increased pH values of the medium comparable to the control. The addition of each of the three amino acids as carbon and nitrogen sources to the medium significantly induced ammonia secretion by the three species of zoosporic fungi. Ammonia secretion in synthetic medium amended with amino acids as nitrogen source raised by the three zoosporic fungi relative to untreated control except in case of Achlya racemosa treated with isoleucine. Extracellular protease activity was almost promoted in case of Achlya proliferoides and Saprolegnia furcata cultures treated with isoleucine and aspartic acid individually in presence of glucose and vice versa in case of phenylalanine. However, extracellular protease activity of A. racemosa decreased compared with the control at various concentrations of isoleucine and both phenylalanine and aspartic acid assumed inconsistent effects. Extracellular protease activity of the three zoosporic fungi in the medium devoid of glucose varied depending upon zoosporic fungal species, the tested amino acid and the applied concentrations. The values of protease activity were approximately less two folds than that obtained in presence of glucose.
Achlya
;
Amino Acids*
;
Ammonia*
;
Aspartic Acid
;
Carbon
;
Fungi
;
Glucose*
;
Hydrogen-Ion Concentration
;
Isoleucine
;
Nitrogen
;
Oomycetes*
;
Phenylalanine
;
Saprolegnia
;
Shellfish
;
Weights and Measures
4.Cucumber downy mildew and the mechanisms of host resistance: a review.
Shicheng XU ; Hebing WANG ; Junjie FENG ; Huafeng XIANG ; Mengdan WU ; Zhimin WANG ; Dayong WEI ; Hongcheng ZHANG ; Qinglin TANG
Chinese Journal of Biotechnology 2022;38(5):1724-1737
The cultivation and production of cucumber are seriously affected by downy mildew caused by Pseudoperonospora cubensis. Downy mildew damages leaves, stems and inflorescences, and then reduces the yield and quality of cucumber. This review summarized the research advances in cucumber downy mildew, including pathogen detection and defense pathways, regulatory factors, mining of pathogens-resistant candidate genes, proteomic and genomic analysis, and development of QTL remarks. This review may facilitate clarifying the resistance mechanisms of cucumber to downy mildew.
Cucumis sativus/genetics*
;
Oomycetes/genetics*
;
Peronospora
;
Plant Diseases/genetics*
;
Proteomics
5.Biological Control of Pythium Damping-off of Bush Okra Using Rhizosphere Strains of Pseudomonas fluorescens.
Hani M A ABDELZAHER ; M M IMAM ; M A SHOULKAMY ; Y M A GHERBAWY
Mycobiology 2004;32(3):139-147
A severe damping-off disease of bush okra caused by Pythium aphanidermatum, was diagnosed in plastic houses in Der Attia village, 15 km southwest of El-Minia city, Egypt, during the winter of 2001. Bush okra seedlings showed low emergence with bare patches inside the plastic houses. Seedlings that escaped pre-emergence damping-off showed poor growth, stunting and eventually collapsed. Examination of the infected tissues confirmed only Pythium aphanidermatum, showing its typical intercalary antheridia, and lobulate zoosporangia. P. aphanidermatum was shown to be pathogenic on bush okra under pot and field experiments. Bacteria making inhibition zones against the damping-off fungus P. aphanidermatum were selected. Agar discs from rhizosphere soil of bush okra containing colonies were transferred onto agar plate culture of P. aphanidermatum. After 2 days of incubation, colonies producing clear zones of non-Pythium growth were readily detected. The two bacteria with the largest inhibition zones were identified as Pseudomonas fluorescens. Bush okra emergence(%) in both pot and plastic houses experiments indicated that disease control could be obtained by applying P. fluorescens to the soil or coating the bacteria to the bush okra seeds before sowing. In the plastic houses, application of the bacteria onto Pythium-infested soil and sowing bush okra seeds dressed with bacteria gave 100% emergence. In addition, This was the first reported disease of bush okra by this oomycete in Egypt.
Abelmoschus*
;
Agar
;
Bacteria
;
Egypt
;
Fungi
;
Oomycetes
;
Plastics
;
Pseudomonas fluorescens*
;
Pseudomonas*
;
Pythium*
;
Rhizosphere*
;
Seedlings
;
Soil
;
United Nations
6.Identification of DNA Markers Linked to Metalaxyl Insensitivity Loci in Phytophthora infestans.
Seung Hee EOM ; Kwon Jong KIM ; Hee Sun JUNG ; Sang Pyo LEE ; Youn Su LEE
Mycobiology 2003;31(4):229-234
A total of 24 isolates of Phytophthora infestans were tested and analyzed for their resistance to metalaxyl fungicides. Sensitivity to metalaxyl was determined by growing isolates on 20% V8 medium amended with 0, 5, and 100 microg/ml metalaxyl. Four isolates among the 24 tested were resistant to metalaxyl. Eleven isolates were intermediate and nine isolates were sensitive. Amplified fragment length polymorphism (AFLP) assay was used to identify the amplification products of resistant isolates. As a result, selected fragments were cloned, sequences and primer pairs were developed which linked to metalaxyl insensitivity in P. infestans using competitive PCR.
Clone Cells
;
DNA*
;
Genetic Markers*
;
Phytophthora infestans*
;
Phytophthora*
;
Polymerase Chain Reaction
7.Resistance Induction and Enhanced Tuber Production by Pre-inoculation with Bacterial Strains in Potato Plants against Phytophthora infestans.
Hyo Jeong KIM ; Yong Chull JEUN
Mycobiology 2006;34(2):67-72
Efficacy of resistance induction by the bacterial isolates Pseudomonas putida (TRL2-3), Micrococcus luteus (TRK2-2) and Flexibacteraceae bacterium (MRL412), which were isolated from the rhizosphere of plants growing in Jeju Mountain, were tested in a greenhouse. The disease severity caused by Phytophthora infestans was effectively reduced in the potato plants pre-inoculated with bacterial isolates compared with those of the untreated control plants growing in a greenhouse. In order to estimate the level of protection by the bacterial isolates, Mancozeb WP (Diesen M(R), Kyong nong) and DL-3-amino butyric acid (BABA) were pre-treated, whereas Dimethomorph WP (Forum(R), Kyong nong) and phosphonic acid (H3PO3) were post-treated the challenge inoculation with the pathogen. Disease severities of chemical pre-treated as well as post-treated plants were reduced compare to those of the untreated. The disease reduction in the plants pre-treated with Mancozeb WP was the highest, whereas that of post-treated with Dimethomorph WP was the lowest. The yields of plants pre-inoculated with three bacterial isolates were greatly increased than those of control plants. These results suggest that biological control by bacterial isolates might be an alternative strategy against late blight disease in potato plants growing in greenhouse.
Butyric Acid
;
Cytophagaceae
;
Micrococcus luteus
;
Phytophthora infestans*
;
Phytophthora*
;
Pseudomonas putida
;
Rhizosphere
;
Solanum tuberosum*
8.Efficacy of Chaetomium Species as Biological Control Agents against Phytophthora nicotianae Root Rot in Citrus.
Phung Manh HUNG ; Pongnak WATTANACHAI ; Soytong KASEM ; Supattra POEAIM
Mycobiology 2015;43(3):288-296
Thailand is one of the largest citrus producers in Southeast Asia. Pathogenic infection by Phytophthora, however, has become one of major impediments to production. This study identified a pathogenic oomycete isolated from rotted roots of pomelo (Citrus maxima) in Thailand as Phytophthora nicotianae by the internal transcribed spacer ribosomal DNA sequence analysis. Then, we examined the in vitro and in vivo effects of Chaetomium globosum, Chaetomium lucknowense, Chaetomium cupreum and their crude extracts as biological control agents in controlling this P. nicotianae strain. Represent as antagonists in biculture test, the tested Chaetomium species inhibited mycelial growth by 50~56% and parasitized the hyphae, resulting in degradation of P. nicotianae mycelia after 30 days. The crude extracts of these Chaetomium species exhibited antifungal activities against mycelial growth of P. nicotianae, with effective doses of 2.6~101.4 microg/mL. Under greenhouse conditions, application of spores and methanol extracts of these Chaetomium species to pomelo seedlings inoculated with P. nicotianae reduced root rot by 66~71% and increased plant weight by 72~85% compared to that in the control. The method of application of antagonistic spores to control the disease was simple and economical, and it may thus be applicable for large-scale, highly effective biological control of this pathogen.
Asia, Southeastern
;
Biological Control Agents*
;
Chaetomium*
;
Citrus*
;
Complex Mixtures
;
DNA, Ribosomal
;
Hyphae
;
Methanol
;
Oomycetes
;
Phytophthora*
;
Plants
;
Seedlings
;
Sequence Analysis
;
Spores
;
Thailand
;
Tobacco*
9.Taxonomy and Phylogeny of Peronospora Species (Oomycota) Parasitic to Stellaria and Pseudostellaria in Korea, with the Introduction of Peronospora casparyi sp. nov..
Jae Sung LEE ; Hyeon Dong SHIN ; Hyang Burm LEE ; Young Joon CHOI
Mycobiology 2017;45(4):263-269
The genus Peronospora, an obligate biotrophic group belonging to Oomycota, causes serious damage to a variety of wild and ornamental plants, as well as cultivated crops, such as beet, rose, spinach, and tobacco. To investigate the diversity of Peronospora species parasitic to Stellaria and Pseudostellaria (Caryophyllaceae) plants in Korea, we performed a morphological analysis on dried herbarium specimens and molecular phylogenetic inferences based on internal transcribed spacer rDNA and cox2 mitochondrial DNA sequences. As a result, it was confirmed that there are four species of Peronospora parasitic to specific species of Stellaria and Pseudostellaria, all of which were hitherto unrecorded in Korea: P. alsinearum (ex Stellaria media), P. stellariae-aquaticae (ex Stellaria aquatica), P. stellariae-uliginosae (ex Stellaria alsine), and P. pseudostellariae (ex Pseudostellaria palibiniana). In addition, Peronospora specimens parasitic to Pseudostellaria davidii differed morphologically from P. pseudostellariae owing to the large and ellipsoidal conidia; this morphological discrepancy was also validated by the high genetic divergence between the two species. Peronospora casparyi sp. nov. is described and illustrated here.
Beta vulgaris
;
Caryophyllaceae
;
Classification*
;
DNA, Mitochondrial
;
DNA, Ribosomal
;
Host Specificity
;
Korea*
;
Oomycetes
;
Peronospora*
;
Phylogeny*
;
Spinacia oleracea
;
Spores, Fungal
;
Stellaria*
;
Tobacco
10.Saprolegnia parasitica Isolated from Rainbow Trout in Korea: Characterization, Anti-Saprolegnia Activity and Host Pathogen Interaction in Zebrafish Disease Model.
Sangyeop SHIN ; D C M KULATUNGA ; S H S DANANJAYA ; Chamilani NIKAPITIYA ; Jehee LEE ; Mahanama DE ZOYSA
Mycobiology 2017;45(4):297-311
Saprolegniasis is one of the most devastating oomycete diseases in freshwater fish which is caused by species in the genus Saprolegnia including Saprolegnia parasitica. In this study, we isolated the strain of S. parasitica from diseased rainbow trout in Korea. Morphological and molecular based identification confirmed that isolated oomycete belongs to the member of S. parasitica, supported by its typical features including cotton-like mycelium, zoospores and phylogenetic analysis with internal transcribed spacer region. Pathogenicity of isolated S. parasitica was developed in embryo, juvenile, and adult zebrafish as a disease model. Host-pathogen interaction in adult zebrafish was investigated at transcriptional level. Upon infection with S. parasitica, pathogen/antigen recognition and signaling (TLR2, TLR4b, TLR5b, NOD1, and major histocompatibility complex class I), pro/anti-inflammatory cytokines (interleukin [IL]-1β, tumor necrosis factor α, IL-6, IL-8, interferon γ, IL-12, and IL-10), matrix metalloproteinase (MMP9 and MMP13), cell surface molecules (CD8⁺ and CD4⁺) and antioxidant enzymes (superoxide dismutase, catalase) related genes were differentially modulated at 3- and 12-hr post infection. As an anti-Saprolegnia agent, plant based lawsone was applied to investigate on the susceptibility of S. parasitica showing the minimum inhibitory concentration and percentage inhibition of radial growth as 200 μg/mL and 31.8%, respectively. Moreover, natural lawsone changed the membrane permeability of S. parasitica mycelium and caused irreversible damage and disintegration to the cellular membranes of S. parasitica. Transcriptional responses of the genes of S. parasitica mycelium exposed to lawsone were altered, indicating that lawsone could be a potential anti-S. parasitica agent for controlling S. parasitica infection.
Adult
;
Cytokines
;
Embryonic Structures
;
Fresh Water
;
Host-Pathogen Interactions
;
Humans
;
Interferons
;
Interleukin-12
;
Interleukin-6
;
Interleukin-8
;
Korea*
;
Major Histocompatibility Complex
;
Membranes
;
Microbial Sensitivity Tests
;
Mycelium
;
Oncorhynchus mykiss*
;
Oomycetes
;
Permeability
;
Plants
;
Saprolegnia*
;
Tumor Necrosis Factor-alpha
;
Virulence
;
Zebrafish*