1.Expression relationship of Hippo signaling molecules and ovarian germline stem cell markers in the ovarian aging process of women and mice.
Jiao XU ; Xiu-Ping CAO ; Zi-Juan TANG ; Jian HUANG ; Yue-Hui ZHENG ; Jia LI
Acta Physiologica Sinica 2019;71(3):405-414
The present study was aimed to investigate the expression relationship of Hippo signaling molecules and ovarian germline stem cell (OGSC) markers in the development schedule of OGSCs during ovarian aging in women and mice. The ovaries of 2-month-old mature (normal control) and 12-month-old (physiological ovarian aging) KM mice were sampled, and the ovarian cortex samples of young (postpuberty to 35 years old), middle age (36-50 years old) and menopausal period (51-60 years old) women were obtained with consent. The mice model of pathological ovarian aging was established by intraperitoneal injection of cyclophosphamide/busulfan (CY/BUS). HE staining was used to detect the changes of follicles at different stages, and the localization and expression changes of Hippo signaling molecules and OGSCs related factors (MVH/OCT4) were detected by immunohistochemistry and immunofluorescence staining. Western blot was used to detect the protein expression levels of the major molecules in the Hippo signaling pathway and OGSCs related factors. The results showed that there were not any normal follicles, but a few atresia follicles in the ovaries from physiological and pathological ovarian aging mice. Compared with the normal control mice, both the physiological and pathological ovarian aging mice showed decreased protein expression levels of the main Hippo signaling molecules (pYAP1) and MVH/OCT4; Whereas only the pathological ovarian aging mice showed increased ratio of pYAP1/YAP1. In comparison with the young women, the middle age and menopausal women showed looser structure of ovarian surface epithelium (OSE) and less ovarian cortical cells. The protein expression level of LATS2 in the OSE was the highest in young women, MST1 expression was the lowest in the menopausal period women, and the expression levels of YAP1 and pYAP1 were the highest in middle age women. Compared with the young women, the middle age and menopausal period women exhibited significantly decreased ratio of OSE pYAP1/YAP1, whereas there was no significant difference between them. The expression level of MVH protein in OSE from the young women was significantly higher than those of the middle age and menopausal period women. These results indicate that there is an expression relationship between the main molecules of Hippo signaling pathway and OGSCs related factors, which suggests that Hippo signaling pathway may regulate the expression levels of OGSCs related factors, thus participating in the process of physiological and pathological degeneration of ovarian.
Adaptor Proteins, Signal Transducing
;
metabolism
;
Adult
;
Aging
;
Animals
;
Epithelium
;
Female
;
Humans
;
Mice
;
Middle Aged
;
Octamer Transcription Factor-3
;
metabolism
;
Oogonial Stem Cells
;
metabolism
;
Ovarian Follicle
;
Ovary
;
Phosphoproteins
;
metabolism
;
Protein-Serine-Threonine Kinases
;
metabolism
;
Signal Transduction
;
Tumor Suppressor Proteins
;
metabolism
2.Metformin improves polycystic ovary syndrome and activates female germline stem cells in mice.
Chun-Hong WANG ; Qiang-Qiang WANG ; Ya-Shan SU ; Ya-Qun SUN ; Miao SUN ; Xin-Rui LIU ; Hui-Ming MA ; Guang-Yong LI ; Xiao-Li DU ; Rui HE
Acta Physiologica Sinica 2022;74(3):370-380
Polycystic ovary syndrome (PCOS) is a common disease caused by complex endocrine and metabolic abnormalities in women of childbearing age. Metformin is the most widely used oral hypoglycemic drug in clinic. In recent years, metformin has been used in the treatment of PCOS, but its mechanism is not clear. In this study, we aimed to investigate the effect of metformin on PCOS and its mechanism through PCOS mouse model. Female C57BL/6J mice aged 4-5 weeks were intragastrically given letrozole (1 mg/kg daily) combined with a high-fat diet (HFD) for 21 days to establish the PCOS model. After modeling, metformin (200 mg/kg daily) was intragastrically administered. One month later, the body weight and oral glucose tolerance test (OGTT) were measured. Hematoxylin eosin (H&E) staining was used to detect the pathological changes of ovary. The serum levels of anti-Mullerian hormone (AMH), follicle-stimulating hormone (FSH), luteinizing hormone (LH), E2 and testosterone (T) were measured by ELISA. The expression of DDX4/MVH was detected by immunohistochemistry. DDX4/MVH and PCNA were co-labeled by immunofluorescence. The protein levels of DDX4/MVH, PCNA, cyclin D2, AMPK and mTOR were detected by Western blot. The results showed that after metformin treatment, the body weights of PCOS mice were gradually returned to normal, glucose tolerance was significantly improved, serum E2 levels were increased, while AMH, LH, T levels and LH/FSH ratio were decreased. Ovarian polycystic lesions were reduced with reduced atresia follicles. Furthermore, the number of proliferative female germline stem cells (FGSCs) and levels of proliferation related proteins (PCNA, cyclin D2) were significantly increased, and the p-mTOR and p-AMPK levels were markedly up-regulated. These results suggest that metformin treatment not only improves hyperandrogenemia, glucose intolerance and polycystic ovarian lesions in PCOS, but also activates the function of FGSCs. The underlying mechanism may be related to the phosphorylation of AMPK and mTOR. These findings provide new evidence to use metformin in the treatment of PCOS and follicular development disorder.
AMP-Activated Protein Kinases
;
Animals
;
Cyclin D2
;
Female
;
Follicle Stimulating Hormone/therapeutic use*
;
Humans
;
Luteinizing Hormone/therapeutic use*
;
Metformin/pharmacology*
;
Mice
;
Mice, Inbred C57BL
;
Oogonial Stem Cells/metabolism*
;
Ovarian Cysts/drug therapy*
;
Ovarian Neoplasms
;
Polycystic Ovary Syndrome/drug therapy*
;
Proliferating Cell Nuclear Antigen/therapeutic use*
;
TOR Serine-Threonine Kinases