1.Research on the mechanism and regulation of overtraining-related the function of neutrophils by the inhibitor of NADPH oxidase and glutamine supplementation.
Chinese Journal of Applied Physiology 2013;29(4):339-344
OBJECTIVETo investigate the method and mechanism for exercise-related immunosuppression via the inhibitor of NADPH oxidase diphenyleneiodonium(DPI) and glutamine supplementation and on the function of neutrophils after overtraining.
METHODSFifty male Wistar rats were randomly divided into five groups: a negative control group (C), an overtraining group (E), an overtraining + DPI intervention group (D), an overtraining+ glutamine supplementation group(G) and combined glutamine + DPI intervention group(DG). After 36 - 40 h from the last training, eight rats were randomly selected from each group, and blood was sampled from the orbital vein. ELISAs were used to measure serum cytokine levels and lipid peroxidation in blood plasma. Flow cytometry was used to measure neutrophil respiratory burst and phagocytosis. The activity of NADPH oxidase was assessed by chemiluminescence and the gene expression of gp91(phox) and p47(phox) of the NADPH-oxidase subunit was checked by Western blot.
RESULTSCompared with group C, the plasma concentrations of NO increased in group G, and the NO, cytokine-induced neutrophil chemoattractant (CINC) concentrations in group DG increased significantly. The respiratory burst and phagocytosis function of neutrophils were decreased in group E, but in group DG were increased when compared with those of group E. After overtraining the expression of gp91(phox) and p47(phox) was up regulated in group E. There were no significant changes in other groups except group DG, in which the expression of gp91(phox) was down regulated. Compared with group E, the expression of gp91(phox) and p47(phox) was up regulated in group D, group G and group DG.
CONCLUSIONThe activation of NADPH oxidase is responsible for the production of superoxide anions, which may be related to the decrease in neutrophil function after over training and is the mechanism of exercise-related immunosuppression. The DPI treatment combined glutamine supplementation can reverse the decrease neutrophils function after overtraining in vitro.
Animals ; Dietary Supplements ; Glutamine ; pharmacology ; Hyperkinesis ; physiopathology ; Male ; Membrane Glycoproteins ; metabolism ; NADPH Oxidase 2 ; NADPH Oxidases ; antagonists & inhibitors ; metabolism ; Neutrophils ; metabolism ; physiology ; Onium Compounds ; pharmacology ; Oxidation-Reduction ; Rats ; Rats, Wistar ; Respiratory Burst ; physiology
2.Diphenyleneiodonium Inhibits Apoptotic Cell Death of Gastric Epithelial Cells Infected with Helicobacter pylori in a Korean Isolate.
Soon Ok CHO ; Joo Weon LIM ; Hyeyoung KIM
Yonsei Medical Journal 2015;56(4):1150-1154
NADPH oxidase produces a large amount of reactive oxygen species (ROS) in Helicobacter pylori (H. pylori)-induced gastric epithelial cells. Even though ROS mediate apoptotic cell death, direct involvement of NADPH oxidase on H. pylori-induced apoptosis remains unclear. Besides, H. pylori isolates show a high degree of genetic variability. The predominant genotype of H. pylori in Korea has been reported as cagA+, vacA s1b, m2, iceA genotype. Present study aims to investigate whether NADPH oxidase-generated ROS mediate apoptosis in human gastric epithelial AGS cells infected with H. pylori in a Korean isolate. AGS cells were pretreated with or without an NADPH oxidase inhibitor diphenyleneiodonium (DPI) and cultured in the presence of H. pylori at a bacterium/cell ratio of 300:1. Cell viability, hydrogen peroxide level, DNA fragmentation, and protein levels of p53, Bcl-2, and Bax were determined. Results showed that H. pylori inhibited cell viability with the density of H. pylori added to the cells. Inhibition of NADPH oxidase by DPI suppressed H. pylori-induced cell death, increased hydrogen peroxide, DNA fragmentation, and the ratio of Bax/Bcl-2, and p53 induction in AGS cells dose-dependently. The results suggest that targeting NADPH oxidase may prevent the development of gastric inflammation associated with H. pylori infection by suppressing abnormal apoptotic cell death of gastric epithelial cells.
Apoptosis
;
Apoptosis Regulatory Proteins/metabolism
;
Cell Survival
;
Epithelial Cells/metabolism/microbiology
;
Gastric Mucosa/metabolism
;
Helicobacter Infections/*metabolism/microbiology
;
Helicobacter pylori/drug effects/genetics/*isolation & purification
;
Humans
;
NADPH Oxidase/metabolism
;
Onium Compounds/*antagonists & inhibitors/pharmacology
;
Oxidative Stress/drug effects
;
Reactive Oxygen Species/metabolism
;
Republic of Korea
;
Stomach/cytology/*metabolism/microbiology
3.NADPH oxidase-derived reactive oxygen species involved in angiotensin II-induced monocyte chemoattractant protein-1 expression in mesangial cells.
Ying CHEN ; Ai-hua ZHANG ; Song-ming HUANG ; Gui-xia DING ; Wei-zhen ZHANG ; Hua-ying BAO ; Hong-mei WU ; Rong-hua CHEN
Chinese Journal of Pathology 2009;38(7):456-461
OBJECTIVETo investigate the origin of oxidative stress induced by angiotensin II (AngII) in human mesangial cells and the role of reactive oxygen species (ROS) in AngII-induced monocyte chemoattractant protein-1 (MCP-1) expression.
METHODSMCP-1 expression was determined by real time RT-PCR. ROS production was measured by DCFDA fluorescence. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase activity was examined by lucigenin chemiluminescence. p47phox and p67phox translocation was assayed by Western blot. Twenty-four male mice were randomly divided into three groups: the control, the AngIIinfusion [AngII 400 ng/(kg.min)], and the apocynin treatment. AngII was infused by subcutaneously osmotic minipump for 14 days. Urinary albumin and 8-isoprostane excretion were measured by ELISA.
RESULTSIn cultured human mesangial cells, AngII induced the MCP-1 expression in a dose-dependent manner with 3.56 fold increase as compared with the control. AngII increased intracellular ROS production as early as 3 min with the peak at 60 min and was in a time and dose-dependent. Incubation with different dosages of AngII (1 nmol/L, 10 nmol/L, and 100 nmol/L AngII) for 60 min, ROS production increased at 1.82, 2.92, and 4.08 folds respectively. AngII-induced ROS generation was sensitive to diphenyleneiodonium sulfate (DPI, 10 micromol/L) and apocynin (500 micromol/L), two structurally distinct NADPH oxidase inhibitors. In contrast, inhibitors of other oxidant-producing enzymes, including the mitochondrial complex Iinhibitor rotenone, the xanthine oxidase inhibitor allopurinol, the cyclooxygenase inhibitor indomethacin, the lipoxygenase inhibitor nordihydroguiaretic acid, the cytochrome P450 oxygenase inhibitor ketoconazole and the nitric oxide synthase inhibitor G-nitro-L-arginine methyl ester were without an effect. AngII-induced ROS generation was inhibited by the AT1 antagonist losartan (10 micromol/L) but not the AT2 antagonist PD123319 (10 micromol/L). AngII treatment induced translocation of cytosolic of p47phox and p67phox to the membrane. The antioxidants almost abolished AngII-induced MCP-1 expression. AngII infusion increased urinary and p67 translocation by 2.69-, 2.97-, and 2.67-fold, respectively.
CONCLUSIONSNADPH oxidase-derived ROS is involved in AngII-induced MCP-1 expression. Inhibition of NADPH oxidase alleviates AngII-induced renal injury.
Acetophenones ; pharmacology ; Angiotensin II ; administration & dosage ; pharmacology ; Angiotensin II Type 1 Receptor Blockers ; pharmacology ; Animals ; Cells, Cultured ; Chemokine CCL2 ; metabolism ; Dose-Response Relationship, Drug ; Humans ; Losartan ; pharmacology ; Male ; Mesangial Cells ; metabolism ; Mice ; Mice, Inbred C57BL ; NADPH Oxidases ; antagonists & inhibitors ; metabolism ; Onium Compounds ; pharmacology ; Oxidative Stress ; Phosphoproteins ; metabolism ; Protein Transport ; Random Allocation ; Reactive Oxygen Species ; metabolism
4.Oxidative stress in granulosa cells contributes to poor oocyte quality and IVF-ET outcomes in women with polycystic ovary syndrome.
Qiaohong LAI ; Wenpei XIANG ; Qing LI ; Hanwang ZHANG ; Yufeng LI ; Guijin ZHU ; Chengliang XIONG ; Lei JIN
Frontiers of Medicine 2018;12(5):518-524
The increased levels of intracellular reactive oxygen species (ROS) in granulosa cells (GCs) may affect the pregnancy results in women with polycystic ovary syndrome (PCOS). In this study, we compared the in vitro fertilization and embryo transfer (IVF-ET) results of 22 patients with PCOS and 25 patients with tubal factor infertility and detected the ROS levels in the GCs of these two groups. Results showed that the PCOS group had significantly larger follicles on the administration day for human chorionic gonadotropin than the tubal factor group (P < 0.05); however, the number of retrieved oocytes was not significantly different between the two groups (P > 0.05). PCOS group had slightly lower fertilization, cleavage, grade I/II embryo, clinical pregnancy, and implantation rates and higher miscarriage rate than the tubal factor group (P > 0.05). We further found a significantly higher ROS level of GCs in the PCOS group than in the tubal factor group (P < 0.05). The increased ROS levels in GCs caused GC apoptosis, whereas NADPH oxidase 2 (NOX2) specific inhibitors (diphenyleneiodonium and apocynin) significantly reduced the ROS production in the PCOS group. In conclusion, the increased ROS expression levels in PCOS GCs greatly induced cell apoptosis, which further affected the oocyte quality and reduced the positive IVF-ET pregnancy results of women with PCOS. NADPH oxidase pathway may be involved in the mechanism of ROS production in GCs of women with PCOS.
Abortion, Spontaneous
;
epidemiology
;
Acetophenones
;
therapeutic use
;
Adult
;
Apoptosis
;
drug effects
;
Embryo Transfer
;
Female
;
Fertilization in Vitro
;
Granulosa Cells
;
metabolism
;
Humans
;
NADPH Oxidases
;
antagonists & inhibitors
;
Onium Compounds
;
therapeutic use
;
Oocyte Retrieval
;
Oxidative Stress
;
Polycystic Ovary Syndrome
;
drug therapy
;
Pregnancy
;
Pregnancy Rate
;
Reactive Oxygen Species
;
metabolism