1.Understanding of Patients with Severe COVID-19 Using Lung Ultrasound
Seo-Hee YANG ; Eun Ju PARK ; Jung-Hyun KIM ; Jin Woo SONG ; Young-Jae CHO
Tuberculosis and Respiratory Diseases 2025;88(2):380-387
Background:
Lung ultrasound (LUS) has proven valuable in the initial assessment of coronavirus disease 2019 (COVID-19), but its role in detecting pulmonary fibrosis following intensive care remains unclear. This study aims to assess the presence of pulmonary sequelae and fibrosis-like changes using LUS in survivors of severe COVID-19 pneumonia one month after discharge.
Methods:
We prospectively enrolled patients with severe COVID-19 who required mechanical ventilation in the intensive care unit (ICU) and conducted LUS assessments from admission to the outpatient visit after discharge. We tracked changes in key LUS findings and applied our proprietary LUS scoring system. To evaluate LUS accuracy, we correlated measured LUS values with computed tomography scores.
Results:
We evaluated B-line presence, pleural thickness, and consolidation in 14 eligible patients. The LUS scores exhibited minimal changes, with values of 19.1, 19.2, and 17.5 at admission, discharge, and the outpatient visit, respectively. Notably, the number of B-lines decreased significantly, from 1.92 at admission to 0.56 at the outpatient visit (p<0.05), while pleural thickness increased significantly, from 2.05 at admission to 2.48 at the outpatient visit (p≤0.05).
Conclusion
This study demonstrates that LUS can track changes in lung abnormalities in severe COVID-19 patients from ICU admission through to outpatient follow-up. While pleural thickening and B-line patterns showed significant changes, no correlation was found between LUS and high-resolution computed tomography fibrosis scores. These findings suggest that LUS may serve as a supplementary tool for assessing pulmonary recovery in severe COVID-19 cases.
2.Prevalence of New Frailty at Hospital Discharge in Severe COVID-19 Survivors and Its Associated Factors
Jong Hwan JEONG ; Manbong HEO ; Sunghoon PARK ; Su Hwan LEE ; Onyu PARK ; Taehwa KIM ; Hye Ju YEO ; Jin Ho JANG ; Woo Hyun CHO ; Jung-Wan YOO ;
Tuberculosis and Respiratory Diseases 2025;88(2):361-368
Background:
The development of frailty at hospital discharge affects the clinical outcomes in severe coronavirus disease 2019 (COVID-19) survivors who had no frailty before hospitalization. We aimed to describe the prevalence of new frailty using the clinical frailty scale (CFS) and evaluate its associated factors in patients with severe COVID-19 without pre-existing frailty before hospitalization.
Methods:
We performed a secondary analysis of clinical data from a nationwide retrospective cohort collected from 22 hospitals between January 1, 2020 and August 31, 2021. The patients were at least 19 years old and survived until discharge after admission to the intensive care unit (ICU) because of severe COVID-19. Development of new frailty was defined as a CFS score ≥5 at hospital discharge.
Results:
Among 669 severe COVID-19 survivors without pre-existing frailty admitted to the ICU, the mean age was 65.2±12.8 years, 62.5% were male, and 50.2% received mechanical ventilation (MV). The mean CFS score at admission was 2.4±0.9, and new frailty developed in 27.8% (186/483). In multivariate analysis, older age, cardiovascular disease, CFS score of 3–4 before hospitalization, increased C-reactive protein level, longer duration of corticosteroid treatment, and use of MV and extracorporeal membrane oxygenation were identified as factors associated with new-onset frailty.
Conclusion
Our study suggests that new frailty is not uncommon and is associated with diverse factors in survivors of severe COVID-19 without pre-existing frailty.
3.High-Dose Rifampicin for 3 Months after Culture Conversion for Drug-Susceptible Pulmonary Tuberculosis
Nakwon KWAK ; Joong-Yub KIM ; Hyung-Jun KIM ; Byoung-Soo KWON ; Jae Ho LEE ; Jeongha MOK ; Yong-Soo KWON ; Young Ae KANG ; Youngmok PARK ; Ji Yeon LEE ; Doosoo JEON ; Jung-Kyu LEE ; Jeong Seong YANG ; Jake WHANG ; Kyung Jong KIM ; Young Ran KIM ; Minkyoung CHEON ; Jiwon PARK ; Seokyung HAHN ; Jae-Joon YIM
Tuberculosis and Respiratory Diseases 2025;88(1):170-180
Background:
This study aimed to determine whether a shorter high-dose rifampicin regimen is non-inferior to the standard 6-month tuberculosis regimen.
Methods:
This multicenter, randomized, open-label, non-inferiority trial enrolled participants with respiratory specimen positivity by Xpert MTB/RIF assay or Mycobacterium tuberculosis culture without rifampicin-resistance. Participants were randomized at 1:1 to the investigational or control group. The investigational group received high-dose rifampicin (30 mg/kg/day), isoniazid, and pyrazinamide until culture conversion, followed by high-dose rifampicin and isoniazid for 12 weeks. The control group received the standard 6-month regimen. The primary outcome was the rate of unfavorable outcomes at 18 months post-randomization. The non-inferiority margin was set at <6% difference in unfavorable outcomes rates. The study is registered with ClinicalTrials.gov (NCT04485156)
Results:
Between 4 November 2020 and 3 January 2022, 76 participants were enrolled. Of these, 58 were included in the modified intention-to-treat analysis. Unfavorable outcomes occurred in 10 (31.3%) of 32 in the control group and 10 (38.5%) of 26 in the investigational group. The difference was 7.2% (95% confidence interval, ∞ to 31.9%), failing to prove non-inferiority. Serious adverse events and grade 3 or higher adverse events did not differ between the groups.
Conclusion
The shorter high-dose rifampicin regimen failed to demonstrate non-inferiority but had an acceptable safety profile.
4.Association of Nutritional Intake with Physical Activity and Handgrip Strength in Individuals with Airflow Limitation
I Re HEO ; Tae Hoon KIM ; Jong Hwan JEONG ; Manbong HEO ; Sun Mi JU ; Jung-Wan YOO ; Seung Jun LEE ; Yu Ji CHO ; Yi Yeong JEONG ; Jong Deog LEE ; Ho Cheol KIM
Tuberculosis and Respiratory Diseases 2025;88(1):120-129
Background:
We investigated whether nutritional intake is associated with physical activity (PA) and handgrip strength (HGS) in individuals with airflow limitation.
Methods:
This study analyzed data from the 2014 and 2016 Korean National Health and Nutrition Examination Survey. We assessed total protein intake (g/day), caloric intake (kcal/day), and other nutritional intakes, using a 24-hour dietary recall questionnaire. HGS was measured three times for each hand using a digital grip strength dynamometer, and PA was assessed as health-enhancing PA. Airflow limitation was defined as a forced expiratory volume/forced vital capacity ratio of 0.7 in individuals over 40 years of age. Participants were categorized into groups based on their PA levels and HGS measurements: active aerobic PA vs. non-active aerobic PA, and normal HGS vs. low HGS.
Results:
Among the 622 individuals with airflow limitation, those involved in active aerobic PA and those with higher HGS had notably higher total food, calorie, water, protein, and lipid intake. The correlations between protein and caloric intake with HGS were strong (correlation coefficients=0.344 and 0.346, respectively). The forest plots show that higher intakes of food, water, calories, protein, and lipids are positively associated with active aerobic PA, while higher intakes of these nutrients are inversely associated with low HGS. However, in the multivariate logistic regression analysis, no significant associations were observed between nutritional intake and active aerobic PA or HGS.
Conclusion
Nutritional intake was found to not be an independent factor associated with PA and HGS. However, the observed correlations suggest potential indirect effects that warrant further investigation.
5.KEAP1-NRF2 Pathway as a Novel Therapeutic Target for EGFR-Mutant Non-small Cell Lung Cancer
Jae-Sun CHOI ; Hye-Min KANG ; Kiyong NA ; Jiwon KIM ; Tae-Woo KIM ; Junyang JUNG ; Heejin LIM ; Hyewon SEO ; Seung Hyeun LEE
Tuberculosis and Respiratory Diseases 2025;88(1):138-149
Background:
Kelch-like ECH-associated protein 1 (KEAP1)–nuclear factor erythroid- 2-related factor 2 (NRF2) pathway is a major regulator protecting cells from oxidative and metabolic stress. Studies have revealed that this pathway is involved in mediating resistance to cytotoxic chemotherapy and immunotherapy; however, its implications in oncogene-addicted tumors are largely unknown. This study aimed to elucidate whether this pathway could be a potential therapeutic target for epidermal growth factor receptor (EGFR)-mutant non-small cell lung cancer.
Methods:
We measured the baseline expression of NRF2 using EGFR-mutant parental cells and acquired gefitinib resistant cells. We investigated whether NRF2 inhibition affected cell death in vitro and tumor growth in vivo using a xenograft mouse model, and compared the transcriptional changes before and after NRF2 inhibition.
Results:
Baseline NRF2 expression was enhanced in PC9 and PC9 with gefitinib resistance (PC9/GR) cells than in other cell lines, with a more prominent expression in PC9/ GR. The NRF2 inhibitor induced NRF2 downregulation and cell death in a dose-dependent manner. Cotreatment with an NRF2 inhibitor enhanced osimertinib-induced cell death in vitro, and potentiated tumor growth inhibition in a PC9/GR xenograft model. Finally, RNA sequencing revealed that NRF2 inhibition resulted in the altered expression of multiple genes involved in various signaling pathways.
Conclusion
We identified that NRF2 inhibition enhanced cell death and inhibited tumor growth in tyrosine kinase inhibitor (TKI)-resistant lung cancer with EGFR-mutation. Thus, NRF2 modulation may be a novel therapeutic strategy to overcome the resistance to EGFR-TKIs.
9.Unraveling distinctions between contrast-enhanced ultrasound and CT/MRI for liver mass diagnosis
Vanessa MURAD ; Hyun-Jung JANG ; Tae Kyoung KIM
Ultrasonography 2025;44(1):19-30
Contrast-enhanced ultrasound (CEUS) offers a distinctive approach to liver mass diagnosis by utilizing intravenous contrast agents for enhanced visualization of vascular structures and tissue characterization. This review highlights the unique advantages of CEUS compared to computed tomography (CT) and magnetic resonance imaging (MRI), particularly focusing on the Liver Imaging Reporting and Data System framework. Key differences include CEUS’s realtime imaging capability, which minimizes arterial phase mistiming and improves detection of hyperenhancing lesions, and its ability to provide detailed washout patterns. Also, CEUS's intravascular nature and lower risk of adverse reactions make it a safer alternative for patients with renal impairment or those contraindicated for CT/MRI.
10.Improving breast ultrasonography education: the impact of AI-based decision support on the performance of non-specialist medical professionals
Sangwon LEE ; Hye Sun LEE ; Eunju LEE ; Won Hwa KIM ; Jaeil KIM ; Jung Hyun YOON
Ultrasonography 2025;44(2):124-133
Purpose:
This study evaluated the educational impact of an artificial intelligence (AI)–based decision support system for breast ultrasonography (US) on medical professionals not specialized in breast imaging.
Methods:
In this multi-case, multi-reader study, educational materials, including American College of Radiology Breast Imaging Reporting and Data System (BI-RADS) descriptors, were provided alongside corresponding AI results during training. The AI system presented results in the form of AIheatmaps, AI scores, and AI-provided BI-RADS assessment categories. Forty-two readers evaluated the test set in three sessions: the first session (S1) occurred before the educational intervention, the second session (S2) followed education without AI assistance, and the third session (S3) took place after education with AI assistance. The area under the receiver operating characteristic curve (AUC), sensitivity, specificity, and overall performance, were compared between the sessions.
Results:
The mean sensitivity increased from 66.5% (95% confidence interval [CI], 59.2% to 73.7%) to 88.7% (95% CI, 84.1% to 93.3%), with a statistically significant difference (P<0.001), and the AUC non-significantly increased from 0.664 (95% CI, 0.606 to 0.723) to 0.684 (95% CI, 0.620 to 0.748) (P=0.300). Both measures were higher in S2 than in S1. The AI-achieved AUC was comparable to that of the expert reader (0.747 [95% CI, 0.640 to 0.855] vs. 0.803 [95% CI, 0.706 to 0.900], P=0.217). Additionally, with AI assistance, the mean AUC for inexperienced readers was not significantly different from that of the expert reader (0.745 [95% CI, 0.660 to 0.830] vs. 0.803 [95% CI, 0.706 to 0.900], P=0.120).
Conclusion
The mean AUC and sensitivity improved after incorporating AI into breast US education and interpretation. AI systems with high-level performance for breast US can potentially be used as educational tools in the interpretation of breast US images.

Result Analysis
Print
Save
E-mail