1.Mapping the metabolic responses to oxaliplatin-based chemotherapy with in vivo spatiotemporal metabolomics
Olkowicz MARIOLA ; Ramadan KHALED ; Rosales-Solano HERNANDO ; Yu MIAO ; Wang AIZHOU ; Cypel MARCELO ; Pawliszyn JANUSZ
Journal of Pharmaceutical Analysis 2024;14(2):196-210
Adjuvant chemotherapy improves the survival outlook for patients undergoing operations for lung metastases caused by colorectal cancer(CRC).However,a multidisciplinary approach that evaluates several factors related to patient and tumor characteristics is necessary for managing chemotherapy treatment in metastatic CRC patients with lung disease,as such factors dictate the timing and drug regimen,which may affect treatment response and prognosis.In this study,we explore the potential of spatial metabolomics for evaluating metabolic phenotypes and therapy outcomes during the local de-livery of the anticancer drug,oxaliplatin,to the lung.12 male Yorkshire pigs underwent a 3 h left lung in vivo lung perfusion(IVLP)with various doses of oxaliplatin(7.5,10,20,40,and 80 mg/L),which were administered to the perfusion circuit reservoir as a bolus.Biocompatible solid-phase microextraction(SPME)microprobes were combined with global metabolite profiling to obtain spatiotemporal infor-mation about the activity of the drug,determine toxic doses that exceed therapeutic efficacy,and conduct a mechanistic exploration of associated lung injury.Mild and subclinical lung injury was observed at 40 mg/L of oxaliplatin,and significant compromise of the hemodynamic lung function was found at 80 mg/L.This result was associated with massive alterations in metabolic patterns of lung tissue and perfusate,resulting in a total of 139 discriminant compounds.Uncontrolled inflammatory response,abnormalities in energy metabolism,and mitochondrial dysfunction next to accelerated kynurenine and aldosterone production were recognized as distinct features of dysregulated metabolipidome.Spatial pharmacometabolomics may be a promising tool for identifying pathological responses to chemotherapy.
2.Solid phase microextraction chemical biopsy tool for monitoring of doxorubicin residue during in vivo lung chemo-perfusion
Bojko BARBARA ; Looby NIKITA ; Olkowicz MARIOLA ; Roszkowska ANNA ; Kupcewicz BOGUMI?A ; Pedro Reck dos Santos ; Ramadan KHALED ; Keshavjee SHAF ; K.Waddell THOMAS ; Gómez-Ríos GERMAN ; Tascon MARCOS ; Goryński KRZYSZTOF ; Cypel MARCELO ; Pawliszyn JANUSZ
Journal of Pharmaceutical Analysis 2021;11(1):37-47
Development of a novel in vivo lung perfusion(IVLP)procedure allows localized delivery of high-dose doxorubicin(DOX)for targeting residual micrometastatic disease in the lungs.However,DOX delivery via IVLP requires careful monitoring of drug level to ensure tissue concentrations of this agent remain in the therapeutic window.A small dimension nitinol wire coated with a sorbent of biocompatible morphology(Bio-SPME)has been clinically evaluated for in vivo lung tissue extraction and determina-tion of DOX and its key metabolites.The in vivo Bio-SPME-IVLP experiments were performed on pig model over various(150 and 225 mg/m2)drug doses,and during human clinical trial.Two patients with metastatic osteosarcoma were treated with a single 5 and 7 μg/mL(respectively)dose of DOX during a 3-h IVLP.In both pig and human cases,DOX tissue levels presented similar trends during IVLP.Human lung tissue concentrations of drug ranged between 15 and 293 μg/g over the course of the IVLP procedure.In addition to DOX levels,Bio-SPME followed by liquid chromatography-mass spectrometry analysis generated 64 metabolic features during endogenous metabolite screening,providing information about lung status during drug administration.Real-time monitoring of DOX levels in the lungs can be per-formed effectively throughout the IVLP procedure by in vivo Bio-SPME chemical biopsy approach.Bio-SPME also extracted various endogenous molecules,thus providing a real-time snapshot of the physi-ology of the cells,which might assist in the tailoring of personalized treatment strategy.