1.Protective effect of transplantation of human oligodendrocyte precursor cells in a rat model of white matter injury.
Xin ZHONG ; Zuo LUAN ; Jing ZANG ; Qian GUAN ; Yin-Xiang YANG ; Qian WANG ; Yuan SHI
Chinese Journal of Contemporary Pediatrics 2021;23(4):410-415
OBJECTIVE:
To study the effect of human oligodendrocyte precursor cell (hOPC) transplantation in the treatment of white matter injury (WMI).
METHODS:
Neonatal rats were randomly divided into a sham-operation group, a model group, and a transplantation group (
RESULTS:
The place navigation test using the Morris water maze showed that the model group had a significantly longer escape latency than the sham-operation group, and compared with the model group, the transplantation group had a significant reduction in escape latency (
CONCLUSIONS
Intrathecal hOPC transplantation may alleviate neurological injury and promote remyelination in a rat model of WMI.
Animals
;
Animals, Newborn
;
Humans
;
Myelin Sheath
;
Oligodendrocyte Precursor Cells
;
Oligodendroglia
;
Rats
;
White Matter
2.Temporal and spatial stability of the EM/PM molecular subtypes in adult diffuse glioma.
Jing FENG ; Zheng ZHAO ; Yanfei WEI ; Zhaoshi BAO ; Wei ZHANG ; Fan WU ; Guanzhang LI ; Zhiyan SUN ; Yanli TAN ; Jiuyi LI ; Yunqiu ZHANG ; Zejun DUAN ; Xueling QI ; Kai YU ; Zhengmin CONG ; Junjie YANG ; Yaxin WANG ; Yingyu SUN ; Fuchou TANG ; Xiaodong SU ; Chuan FANG ; Tao JIANG ; Xiaolong FAN
Frontiers of Medicine 2023;17(2):240-262
Detailed characterizations of genomic alterations have not identified subtype-specific vulnerabilities in adult gliomas. Mapping gliomas into developmental programs may uncover new vulnerabilities that are not strictly related to genomic alterations. After identifying conserved gene modules co-expressed with EGFR or PDGFRA (EM or PM), we recently proposed an EM/PM classification scheme for adult gliomas in a histological subtype- and grade-independent manner. By using cohorts of bulk samples, paired primary and recurrent samples, multi-region samples from the same glioma, single-cell RNA-seq samples, and clinical samples, we here demonstrate the temporal and spatial stability of the EM and PM subtypes. The EM and PM subtypes, which progress in a subtype-specific mode, are robustly maintained in paired longitudinal samples. Elevated activities of cell proliferation, genomic instability and microenvironment, rather than subtype switching, mark recurrent gliomas. Within individual gliomas, the EM/PM subtype was preserved across regions and single cells. Malignant cells in the EM and PM gliomas were correlated to neural stem cell and oligodendrocyte progenitor cell compartment, respectively. Thus, while genetic makeup may change during progression and/or within different tumor areas, adult gliomas evolve within a neurodevelopmental framework of the EM and PM molecular subtypes. The dysregulated developmental pathways embedded in these molecular subtypes may contain subtype-specific vulnerabilities.
Humans
;
Brain Neoplasms/pathology*
;
Neoplasm Recurrence, Local/metabolism*
;
Glioma/pathology*
;
Neural Stem Cells/pathology*
;
Oligodendrocyte Precursor Cells/pathology*
;
Tumor Microenvironment
3.Neuroprotective effects of oligodendrocyte precursor cells on white matter damage in preterm infants.
Yan YUE ; Li ZHANG ; Yi QU ; De-Zhi MU
Chinese Journal of Contemporary Pediatrics 2018;20(4):326-331
White matter damage, characterized by demyelination due to the damage of oligodendrocyte precursor cells (OPCs), is the most common type of brain damage in preterm infants. Survivors are often subject to long-term neurodevelopmental sequelae because of the lack of effective treatment. In recent years, it has been found that cell transplantation has the potential for the treatment of white matter damage. OPCs are frequently used cells in cell transplantation therapy. With abilities of migration and myelinization, OPCs are the best seed cells for the treatment of white matter damage. Several studies have found that OPCs may not only replace impaired cells to reconstruct the structure and function of white matter, but also inhibit neuronal apoptosis, promote the proliferation of endogenous neural stem cells, and enhance the repairment of the blood-brain barrier. However, the clinical application of OPC transplantation therapy faces many challenges, such as the effectiveness, risk of tumorigenesis and immune rejection. With reference to these studies, this article reviewed the development of myelination, the obtainment of OPCs, the therapeutic mechanism as well as application research, and analyzed the current challenges of OPC transplantation, in order to provide a new direction for clinical treatment of white matter damage in preterm infants.
Cell Separation
;
Demyelinating Diseases
;
therapy
;
Humans
;
Infant, Newborn
;
Infant, Premature
;
Oligodendrocyte Precursor Cells
;
transplantation
;
White Matter
;
pathology
4.Effect of electroacupuncture at "Jiaji" (EX-B 2) points on the proliferation and differentiation of oligodendrocyte precursor cells in rats with acute spinal cord injury.
Rong HU ; Yi CHEN ; Hai-Peng XU ; Ke-Lin HE ; Lian-Zhu SUN ; Lei WU ; Rui-Jie MA
Chinese Acupuncture & Moxibustion 2020;40(5):519-525
OBJECTIVE:
To observe the effect of electroacupuncture (EA) at "Jiaji" (EX-B 2) points on the proliferation and differentiation of oligodendrocyte precursor cells in rats with acute incomplete spinal cord injury, and to explore the mechanism of EA on improving motor function of spinal cord injury.
METHODS:
A total of 72 male SPF SD rats were randomly divided into a sham operation group, a model group, an EA group and a medication group, 18 rats in each group. Each group was further divided into 1-day subgroup, 7-day subgroup and 14-day subgroup, 6 rats in each subgroup. The T acute incomplete spinal cord injury model was established by modified Allen's method in the model group, EA group and medication group. The rats in each group received intraperitoneal injection of 5-bromodeoxyuridine (BrdU, 50 mg/kg), once a day, and each subgroup received continuous injection for 1, 7, 14 times for cell proliferation labeling. The rats in the EA group were treated with EA at "Jiaji" (EX-B 2) points 3-4 mm next the spinous process of the upper and lower segments of the injured spinal cord (T, T) with a frequency of 2 Hz/100 Hz and intensity of 1-2 mA. The muscle twitch at the treatment site was taken as the degree. The treatment was given 20 min each time, once a day. In the medication group, monosialogangliosides (GM1) was injected intraperitoneally (10 mg/kg), once a day. The subgroups of EA group and medication group were treated for 1, 7, 14 times. The score of Basso Beattie Bresnahan (BBB) was used to evaluate the motor function of hind limbs. The co-expression of BrdU/NG2 positive cells was detected by immunofluorescence, and the expression of Olig2 and Sox10 was detected by Western blot.
RESULTS:
Compared with the sham operation group, the BBB score was decreased 1 day, 7 days and 14 days after operation in the model group (<0.05), the expression of Olig2 and Sox10 was increased (<0.05), and the co-expression of BrdU/NG2 positive cells was increased 7 days and 14 days after operation (<0.05). Seven days and 14 days after operation, the BBB score in the EA group and medication group was higher than that in the model group (<0.05), and the co-expression of BrdU/NG2 in the medication group was higher than that in the model group (<0.05). Fourteen days after operation, the co-expression of BrdU/NG2 in the EA group was higher than that in the model group (<0.05); 1 day, 7 days and 14 days after operation, the expression of Olig2 and Sox10 in the EA group and medication group was higher than that in the model group (<0.05). Compared with the medication group, the co-expression of BrdU/NG2 positive cells in the EA group 14 days after operation was decreased (<0.05); 1 day, 7 days and 14 days after operation, the expression of Olig2 and Sox10 in the EA group was decreased (<0.05).
CONCLUSION
EA at "Jiaji" (EX-B 2) points could promote the expression of Olig2 and Sox10 after spinal cord injury, which has similar effects with GM1. It could promote the proliferation and differentiation of oligodendrocyte precursor cells into oligodendrocytes, so as to promote the recovery of motor function of rats.
Acupuncture Points
;
Animals
;
Cell Differentiation
;
Cell Proliferation
;
Electroacupuncture
;
Humans
;
Male
;
Oligodendrocyte Precursor Cells
;
cytology
;
Oligodendrocyte Transcription Factor 2
;
metabolism
;
Random Allocation
;
Rats
;
Rats, Sprague-Dawley
;
SOXE Transcription Factors
;
metabolism
;
Spinal Cord
;
Spinal Cord Injuries
;
therapy
5.Long-term effect of oligodendrocyte precursor cell transplantation on a rat model of white matter injury in the preterm infant.
Cheng-Jun WU ; Zhao-Yan WANG ; Yin-Xiang YANG ; Zuo LUAN
Chinese Journal of Contemporary Pediatrics 2017;19(9):1003-1007
OBJECTIVETo investigate the long-term effect of oligodendrocyte precursor cell (OPC) transplantation on a rat model of white matter injury (WMI) in the preterm infant.
METHODSA total of 80 Sprague-Dawley rats aged 3 days were randomly divided into sham-operation group, model control group, 5-day ventricular/white matter transplantation group, 9-day ventricular/white matter transplantation group, 14-day ventricular/white matter transplantation group (n=10 each). All groups except the sham-operation group were treated with right common carotid artery ligation and hypoxia for 80 minutes to establish a rat model of WMI in the preterm infant. OPCs were prepared from the human fetal brain tissue (10-12 gestational weeks). At 5, 9, and 14 days after modeling, 3×10OPCs were injected into the right lateral ventricle or white matter in each transplantation group, and myelin sheath and neurological function were evaluated under an electron microscope at ages of 60 and 90 days.
RESULTSElectron microscopy showed that at an age of 60 days, each transplantation group had a slight improvement in myelin sheath injury compared with the model control group; at an age of 90 days, each transplantation group had significantly thickened myelin sheath and reduced structural damage compared with the model control group, and the 14-day transplantation groups had the most significant changes. There were no significant differences in the degree of myelin sheath injury between the ventricular and white matter transplantation groups at different time points. At an age of 60 or 90 days, the transplantation groups had a significantly higher modified neurological severity score (mNSS) than the sham-operation group and a significantly lower mNSS than the model control group (P<0.05).
CONCLUSIONSOPC transplantation may have a long-term effect in the treatment of WMI in the preterm infant, and delayed transplantation may enhance its therapeutic effect.
Animals ; Animals, Newborn ; Disease Models, Animal ; Myelin Sheath ; pathology ; Oligodendrocyte Precursor Cells ; transplantation ; Rats ; Rats, Sprague-Dawley ; White Matter ; injuries ; pathology ; ultrastructure
6.Myt1L Promotes Differentiation of Oligodendrocyte Precursor Cells and is Necessary for Remyelination After Lysolecithin-Induced Demyelination.
Yanqing SHI ; Qi SHAO ; Zhenghao LI ; Ginez A GONZALEZ ; Fengfeng LU ; Dan WANG ; Yingyan PU ; Aijun HUANG ; Chao ZHAO ; Cheng HE ; Li CAO
Neuroscience Bulletin 2018;34(2):247-260
The differentiation and maturation of oligodendrocyte precursor cells (OPCs) is essential for myelination and remyelination in the CNS. The failure of OPCs to achieve terminal differentiation in demyelinating lesions often results in unsuccessful remyelination in a variety of human demyelinating diseases. However, the molecular mechanisms controlling OPC differentiation under pathological conditions remain largely unknown. Myt1L (myelin transcription factor 1-like), mainly expressed in neurons, has been associated with intellectual disability, schizophrenia, and depression. In the present study, we found that Myt1L was expressed in oligodendrocyte lineage cells during myelination and remyelination. The expression level of Myt1L in neuron/glia antigen 2-positive (NG2) OPCs was significantly higher than that in mature CC1 oligodendrocytes. In primary cultured OPCs, overexpression of Myt1L promoted, while knockdown inhibited OPC differentiation. Moreover, Myt1L was potently involved in promoting remyelination after lysolecithin-induced demyelination in vivo. ChIP assays showed that Myt1L bound to the promoter of Olig1 and transcriptionally regulated Olig1 expression. Taken together, our findings demonstrate that Myt1L is an essential regulator of OPC differentiation, thereby supporting Myt1L as a potential therapeutic target for demyelinating diseases.
Animals
;
Cell Differentiation
;
physiology
;
Demyelinating Diseases
;
chemically induced
;
Lysophosphatidylcholines
;
toxicity
;
Mice
;
Mice, Inbred C57BL
;
Nerve Tissue Proteins
;
metabolism
;
Oligodendrocyte Precursor Cells
;
cytology
;
metabolism
;
Oligodendroglia
;
cytology
;
metabolism
;
Remyelination
;
physiology
;
Transcription Factors
;
metabolism
7.Lipocalin-2-Mediated Insufficient Oligodendrocyte Progenitor Cell Remyelination for White Matter Injury After Subarachnoid Hemorrhage via SCL22A17 Receptor/Early Growth Response Protein 1 Signaling.
Qiang LI ; Xufang RU ; Yang YANG ; Hengli ZHAO ; Jie QU ; Weixiang CHEN ; Pengyu PAN ; Huaizhen RUAN ; Chaojun LI ; Yujie CHEN ; Hua FENG
Neuroscience Bulletin 2022;38(12):1457-1475
Insufficient remyelination due to impaired oligodendrocyte precursor cell (OPC) differentiation and maturation is strongly associated with irreversible white matter injury (WMI) and neurological deficits. We analyzed whole transcriptome expression to elucidate the potential role and underlying mechanism of action of lipocalin-2 (LCN2) in OPC differentiation and WMI and identified the receptor SCL22A17 and downstream transcription factor early growth response protein 1 (EGR1) as the key signals contributing to LCN2-mediated insufficient OPC remyelination. In LCN-knockdown and OPC EGR1 conditional-knockout mice, we discovered enhanced OPC differentiation in developing and injured white matter (WM); consistent with this, the specific inactivation of LCN2/SCl22A17/EGR1 signaling promoted remyelination and neurological recovery in both atypical, acute WMI due to subarachnoid hemorrhage and typical, chronic WMI due to multiple sclerosis. This potentially represents a novel strategy to enhance differentiation and remyelination in patients with white matter injury.
Mice
;
Animals
;
Remyelination/physiology*
;
Oligodendrocyte Precursor Cells/metabolism*
;
White Matter
;
Subarachnoid Hemorrhage/metabolism*
;
Lipocalin-2/metabolism*
;
Early Growth Response Protein 1/metabolism*
;
Oligodendroglia/metabolism*
;
Mice, Knockout
;
Cell Differentiation/physiology*
;
Brain Injuries/metabolism*
8.Shikimic Acid Promotes Oligodendrocyte Precursor Cell Differentiation and Accelerates Remyelination in Mice.
Fengfeng LU ; Dou YIN ; Yingyan PU ; Weili LIU ; Zhenghao LI ; Qi SHAO ; Cheng HE ; Li CAO
Neuroscience Bulletin 2019;35(3):434-446
The obstacle to successful remyelination in demyelinating diseases, such as multiple sclerosis, mainly lies in the inability of oligodendrocyte precursor cells (OPCs) to differentiate, since OPCs and oligodendrocyte-lineage cells that are unable to fully differentiate are found in the areas of demyelination. Thus, promoting the differentiation of OPCs is vital for the treatment of demyelinating diseases. Shikimic acid (SA) is mainly derived from star anise, and is reported to have anti-influenza, anti-oxidation, and anti-tumor effects. In the present study, we found that SA significantly promoted the differentiation of cultured rat OPCs without affecting their proliferation and apoptosis. In mice, SA exerted therapeutic effects on experimental autoimmune encephalomyelitis (EAE), such as alleviating clinical EAE scores, inhibiting inflammation, and reducing demyelination in the CNS. SA also promoted the differentiation of OPCs as well as their remyelination after lysolecithin-induced demyelination. Furthermore, we showed that the promotion effect of SA on OPC differentiation was associated with the up-regulation of phosphorylated mTOR. Taken together, our results demonstrated that SA could act as a potential drug candidate for the treatment of demyelinating diseases.
Animals
;
Apoptosis
;
drug effects
;
Cell Differentiation
;
drug effects
;
Cell Proliferation
;
drug effects
;
Cells, Cultured
;
Demyelinating Diseases
;
prevention & control
;
Encephalitis
;
prevention & control
;
Encephalomyelitis, Autoimmune, Experimental
;
prevention & control
;
Female
;
Mice, Inbred C57BL
;
Myelin Basic Protein
;
metabolism
;
Neuroprotective Agents
;
administration & dosage
;
Oligodendrocyte Precursor Cells
;
drug effects
;
metabolism
;
Rats
;
Remyelination
;
drug effects
;
Shikimic Acid
;
administration & dosage
;
TOR Serine-Threonine Kinases
;
metabolism