1.A review of structural modification and biological activities of oleanolic acid.
Huali YANG ; Minghui DENG ; Hongwei JIA ; Kaicheng ZHANG ; Yang LIU ; Maosheng CHENG ; Wei XIAO
Chinese Journal of Natural Medicines (English Ed.) 2024;22(1):15-30
Oleanolic acid (OA), a pentacyclic triterpenoid, exhibits a broad spectrum of biological activities, including antitumor, antiviral, antibacterial, anti-inflammatory, hepatoprotective, hypoglycemic, and hypolipidemic effects. Since its initial isolation and identification, numerous studies have reported on the structural modifications and pharmacological activities of OA and its derivatives. Despite this, there has been a dearth of comprehensive reviews in the past two decades, leading to challenges in subsequent research on OA. Based on the main biological activities of OA, this paper comprehensively summarized the modification strategies and structure-activity relationships (SARs) of OA and its derivatives to provide valuable reference for future investigations into OA.
Oleanolic Acid
;
Structure-Activity Relationship
;
Anti-Inflammatory Agents/pharmacology*
;
Triterpenes
;
Anti-Bacterial Agents/pharmacology*
2.Qi-Tai-Suan, an oleanolic acid derivative, ameliorates ischemic heart failure via suppression of cardiac apoptosis, inflammation and fibrosis.
Ming QIAN ; Zhi-Qi FENG ; Ru-Nan ZHENG ; Kai-Wen HU ; Jia-Ze SUN ; Hong-Bin SUN ; Liang DAI
Chinese Journal of Natural Medicines (English Ed.) 2022;20(6):432-442
Although anti-thrombotic therapy has been successful for prevention of deaths from acute myocardial infarction (MI), by far, there are few preventive and therapeutic options for ischemic heart failure (IHF) after MI. Qi-Tai-Suan (QTS) is an oleanolic acid (OA) derivative which once underwent a clinical trial for treating hepatitis. In this study, we investigated the potential cardioprotective effect of QTS on IHF. IHF mouse model was constructed by coronary artery ligation in male C57BL/6J mice, and the protective effects of QTS on IHF were examined by echocardiography measurement, histological and TUNEL analysis, etc. We found that QTS exhibited promising cardioprotective effect on IHF. QTS treatment significantly improved cardiac function of IHF mice and the symptoms of heart failure. Notably, QTS had much better oral bioavailability (F = 41.91%) in mice than its parent drug OA, and took effects mainly as its original form. Mechanistically, QTS ameliorated ischemic heart failure likely through suppression of cardiac apoptosis, inflammation and fibrosis. Taken together, QTS holds great promise as a preventive and therapeutic agent for ischemic heart failure and related diseases.
Animals
;
Apoptosis
;
Fibrosis
;
Heart Failure/drug therapy*
;
Inflammation/drug therapy*
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Myocardial Ischemia/pathology*
;
Oleanolic Acid/pharmacology*
3.Design and semisynthesis of oleanolic acid derivatives as VEGF inhibitors: Inhibition of VEGF-induced proliferation, angiogenesis, and VEGFR2 activation in HUVECs.
Ning MENG ; Hong-Xu XIE ; Jia-Rong HOU ; Yan-Bin CHEN ; Meng-Jun WU ; Yue-Wei GUO ; Cheng-Shi JIANG
Chinese Journal of Natural Medicines (English Ed.) 2022;20(3):229-240
Angiogenesis inhibitors targeting the VEGF signaling pathway are developed into drugs for the treatment of vaious diseases, such as cancer, rheumatoid arthritis, and age-related macular degeneration. Recent studies have revealed that oleanolic acid (OA), a natural pentacyclic triterpenoid, inhibited the VEGF/VEGFR2 signaling pathway and angiogenesis in HUVECs, which may represent an attractive VEGF inhibitor. In this paper, rational structural modification towards OA was performed in order to improve its inhibitory effects aganist VEGF and anti-angiogenesis potential. As a result, a series of novel OA derivatives, possessing α,β-unsaturated ketone system in ring A and amide functional group at C-28, were prepared and evaluated for cytotoxicity and their ability to inhibit VEGF-induced abnormal proliferation of HUVECs. The results showed that two promising derivatives, OA-1 and OA-16, exhibited no in vitro cytotoxicity against HUVECs but showed more potent inhibitory activity against VEGF-induced proliferation and angiogenesis in HUVECs, compared with OA. The results of Western blot indicated that OA-1 and OA-16 inhibited VEGF-induced VEGFR2 activation. Furthermore, small interfering RNA experiments were performed to confirm that both compounds inhibited VEGF-induced angiogenesis via VEGFR2. Thus, the present study resulted in the discovery of new promising OA-inspired VEGF inhibitors, which can serve as potential lead compounds for the treatment of angiogenesis-related diseases.
Cell Movement
;
Cell Proliferation
;
Human Umbilical Vein Endothelial Cells
;
Humans
;
Oleanolic Acid/pharmacology*
;
Vascular Endothelial Growth Factor A/metabolism*
4.Identification of a new azoreductase driven prodrug from bardoxolone methyl and 5-aminosalicylate for the treatment of colitis in mice.
Xin QIAO ; Yan GONG ; Yi MOU ; Yi-Hua ZHANG ; Zhang-Jian HUANG ; Xiao-Dong WEN
Chinese Journal of Natural Medicines (English Ed.) 2021;19(7):545-550
For local treatment of ulcerative colitis, a new azoreductase driven prodrug CDDO-AZO from bardoxolone methyl (CDDO-Me) and 5-aminosalicylate (5-ASA) was designed, synthesized and biologically evaluated. It is proposed that orally administrated CDDO-AZO is stable before reaching the colon, while it can also be triggered by the presence of azoreductase in the colon to fragment into CDDO-Me and 5-ASA, generating potent anti-colitis effects. Superior to olsalazine (OLS, a clinically used drug for ulcerative colitis) and CDDO-Me plus 5-ASA, CDDO-AZO significantly attenuated inflammatory colitis symptoms in DSS-induced chronic colitis mice, which suggested that CDDO-AZO may be a promising anti-ulcerative colitis agent.
Animals
;
Colitis/drug therapy*
;
Mesalamine/pharmacology*
;
Mice
;
Nitroreductases
;
Oleanolic Acid/pharmacology*
;
Prodrugs
5.Chikusetsu saponin Ⅳa ameliorates myocardial hypertrophy of rats through regulating expression of miR199a-5p/Atg5.
Xue-Cui WU ; Cheng-Fu YUAN ; Yu-Min HE ; Zhi-Yong ZHOU ; Yue LUO ; Meng-Ting YANG ; Xiao-Xiao LI ; Chao-Qi LIU
China Journal of Chinese Materia Medica 2021;46(19):5064-5071
The present study investigated the effects of chikusetsu saponin Ⅳa(CHS Ⅳa) on isoproterenol(ISO)-induced myocardial hypertrophy in rats and explored the underlying molecular mechanism. ISO was applied to establish a rat model of myocardial hypertrophy, and CHS Ⅳa(5 and 15 mg·kg~(-1)·d~(-1)) was used for intervention. The tail artery blood pressure was measured. Cardiac ultrasound examination was performed. The ratio of heart weight to body weight(HW/BW) was calculated. Morphological changes in the myocardial tissue were observed by HE staining. Collagen deposition in the myocardial tissue was observed by Masson staining. The mRNA expression of myocardial hypertrophy indicators(ANP and BNP), autophagy-related genes(Atg5, P62 and beclin1), and miR199 a-5 p was detected by qRT-PCR. Atg5 protein expression was detected by Western blot. The results showed that the model group exhibited increased tail artery blood pressure and HW/BW ratio, thickened left ventricular myocardium, enlarged myocardial cells, disordered myocardial fibers with widened interstitium, and a large amount of collagen aggregating around the extracellular matrix and blood vessels. ANP and BNP were largely expressed. Moreover, P62 expression was up-regulated, while beclin1 expression was down-regulated. After intervention by CHS Ⅳa at different doses, myocardial hypertrophy was ameliorated and autophagy activity in the myocardial tissue was enhanced. Meanwhile, miR199 a-5 p expression declined and Atg5 expression increased. As predicted by bioinformatics, Atg5 was a target gene of miR199 a-5 p. CHS Ⅳa was capable of preventing myocardial hypertrophy by regulating autophagy of myocardial cells through the miR-199 a-5 p/Atg5 signaling pathway.
Animals
;
Cardiomegaly/genetics*
;
Isoproterenol
;
Myocardium
;
Myocytes, Cardiac
;
Oleanolic Acid/analogs & derivatives*
;
Rats
;
Saponins/pharmacology*
6.Effects of saikosaponin b_2 on inflammation and energy metabolism in mice with acute liver injury induced by LPS/GalN.
Man YOU ; Rui-Fang LI ; Zi-Han GAO ; Yuan-Ye LI ; Wei-Yi LIU ; Jian-Gang WANG ; Hong-Wei WANG ; San-Qiang LI
China Journal of Chinese Materia Medica 2019;44(14):2966-2971
To study the effects of saikosaponin b2( SS-b2) on inflammatory factors and energy metabolism against lipopolysaccharide/galactosamine( LPS/Gal N) induced acute liver injury in mice. Mice were randomly divided into normal group( equal amount of normal saline),model group( 100 g·kg~(-1) LPS and 400 mg·kg~(-1) Gal N),low,medium,high dose group of SS-b2( SS-b25,10,20 mg·kg~(-1)·d-1) and positive control group( dexamethasone,10 mg·kg~(-1)). All of the groups except for the normal group were treated with LPS/Gal N though intraperitoneally injection to establish the acute liver injury model. The organ indexes were calculated. The levels of serum transaminases( ALT and AST) and the activities of ATPase( Na+-K+-ATPase,Ca2+-Mg2+-ATPase) in liver were detected. The activity of tumor necrosis factor-α( TNF-α),interleukin-1β( IL-1β) and interleukin-6( IL-6) were determined by the enzyme-linked immunosorbent assay( ELISA). The contents of lactate dehydrogenase( LDH) in liver were determined by micro-enzyme method. HE staining was used to observe the histopathological changes of the liver. Histochemical method was used to investigate the protein expression of liver lactate dehydrogenase-A( LDH-A). The protein expressions of Sirt-6 and NF-κB in the liver were detected by Western blot. According to the results,compared with the model group,there were significant changes in organ indexes in the high-dose group of SS-b2( P<0. 05). The level of ALT,AST,TNF-α,IL-1β,IL-6 and the activities of LDH in serum of mice with liver injury were significantly reduced in the medium and high dose groups of SS-b2( P<0. 01). With the increase of the concentration of SS-b2,the range of hepatic lesions and the damage in mice decreased. The activities of Na+-K+-ATPase and Ca2+-Mg2+-ATPase in liver of mice were significantly enhanced in each dose group( P<0. 01). The expression of NF-κB in liver tissues was significantly down-regulated in the medium and high dose group( P<0. 01). Meanwhile,the expression of Sirt-6 protein in the liver of mice with acute liver injury was significantly increased in each dose group( P<0. 01).In summary,SS-b2 has a significant protective effect on LPS/Gal N-induced acute liver injury in mice,which may be related to the down-regulation of NF-κB protein expression and up-regulation of Sirt-6 protein expression to improve inflammatory injury and energy metabolism.
Animals
;
Chemical and Drug Induced Liver Injury
;
drug therapy
;
Cytokines
;
metabolism
;
Energy Metabolism
;
Galactosamine
;
Inflammation
;
drug therapy
;
Lipopolysaccharides
;
Liver
;
drug effects
;
Mice
;
NF-kappa B
;
metabolism
;
Oleanolic Acid
;
analogs & derivatives
;
pharmacology
;
Random Allocation
;
Saponins
;
pharmacology
;
Sirtuins
;
metabolism
7.Study on liver protection and hepatotoxicity of saikosaponin a based on zebrafish model.
Qing XIA ; Li-Wen HAN ; Yun ZHANG ; Qiu-Xia HE ; Shan-Shan ZHANG ; Jing-Jing GAO ; Ke-Chun LIU ; Peng-Fei TU
China Journal of Chinese Materia Medica 2019;44(13):2662-2666
Bupleuri Radix has both liver protection and hepatotoxicity. Saponins are the main pharmacodynamic and toxic components of Bupleuri Radix. Based on zebrafish physical model and the model of alcoholic fatty liver( AFL) pathology,the liver toxic and protective effect of saikosaponin a( SSa) were assessed. The results indicated that 1. 77 μmol·L-1 SSa showed protective effect to AFL zebrafish. 5. 30 μmol·L-1 SSa was hepatotoxic to healthy zebrafish,but it showed protective effect to AFL zebrafish. 5. 62 μmol·L-1 SSa was hepatotoxic to healthy and AFL zebrafish. This study is benefit for clinical safety of saikosaponin a.
Animals
;
Chemical and Drug Induced Liver Injury
;
Fatty Liver, Alcoholic
;
drug therapy
;
Oleanolic Acid
;
analogs & derivatives
;
pharmacology
;
toxicity
;
Saponins
;
pharmacology
;
toxicity
;
Zebrafish
8.Transcriptomic analysis in Anemone flaccida rhizomes reveals ancillary pathway for triterpene saponins biosynthesis and differential responsiveness to phytohormones.
Guo-Yan MO ; Fang HUANG ; Yin FANG ; Lin-Tao HAN ; Kayla K PENNERMAN ; Li-Jing BU ; Xiao-Wei DU ; Joan W BENNETT ; Guo-Hua YIN
Chinese Journal of Natural Medicines (English Ed.) 2019;17(2):131-144
Anemone flaccida Fr. Schmidt is a perennial medicinal herb that contains pentacyclic triterpenoid saponins as the major bioactive constituents. In China, the rhizomes are used as treatments for a variety of ailments including arthritis. However, yields of the saponins are low, and little is known about the plant's genetic background or phytohormonal responsiveness. Using one-quarter of the 454 pyrosequencing information from the Roche GS FLX Titanium platform, we performed a transcriptomic analysis to identify 157 genes putatively encoding 26 enzymes involved in the synthesis of the bioactive compounds. It was revealed that there are two biosynthetic pathways of triterpene saponins in A. flaccida. One pathway depends on β-amyrin synthase and is similar to that found in other plants. The second, subsidiary ("backburner") pathway is catalyzed by camelliol C synthase and yields β-amyrin as minor byproduct. Both pathways used cytochrome P450-dependent monooxygenases (CYPs) and family 1 uridine diphosphate glycosyltransferases (UGTs) to modify the triterpenoid backbone. The expression of CYPs and UGTs were quite different in roots treated with the phytohormones methyl jasmonate, salicylic acid and indole-3-acetic acid. This study provides the first large-scale transcriptional dataset for the biosynthetic pathways of triterpene saponins and their phytohormonal responsiveness in the genus Anemone.
Anemone
;
drug effects
;
genetics
;
metabolism
;
Biosynthetic Pathways
;
drug effects
;
genetics
;
Cytochrome P-450 Enzyme System
;
genetics
;
metabolism
;
Gene Expression Profiling
;
Gene Expression Regulation, Plant
;
drug effects
;
Glycosyltransferases
;
genetics
;
metabolism
;
Oleanolic Acid
;
analogs & derivatives
;
metabolism
;
Plant Growth Regulators
;
pharmacology
;
Plant Proteins
;
genetics
;
metabolism
;
Plants, Medicinal
;
Rhizome
;
drug effects
;
genetics
;
metabolism
;
Saponins
;
metabolism
;
Triterpenes
;
metabolism
9.Lipid-lowering effects of oleanolic acid in hyperlipidemic patients.
Han-Qiong LUO ; Jie SHEN ; Cai-Ping CHEN ; Xiao MA ; Chao LIN ; Qiong OUYANG ; Chun-Xiao XUAN ; Jine LIU ; Hong-Bin SUN ; Jun LIU
Chinese Journal of Natural Medicines (English Ed.) 2018;16(5):339-346
Oleanolic acid (OA) is a pentacyclic triterpenoid compound extracted from olea europaeal, a traditional Chinese medicine herb. OA has been used in the clinic as a hepatoprotective medicine in China since 1970s. In our previous study, we observed that OA could ameliorate hyperlipidemia in animal models. In the present study, we conducted a small-scale clinical trial to evaluate the hypolipidemia effect of OA in hyperlipidemic patients. Hyperlipidemic patients were administrated with OA for four weeks (4 tablets once, three times a day). The blood samples of the patients were collected before and after OA treatment. The biological parameters were measured. Furthermore, three patients' blood samples were studied with DNA microarray. After OA administration, the TC, TG, and HDLC levels in serum decreased significantly. DNA microarray analysis results showed that the expressions of 21 mRNAs were significantly changed after OA treatment. Bioinformatics analysis showed 17 mRNAs were up-regulated and 4 mRNAs were down-regulated significantly after OA treatment. Five mRNAs (CACNA1B, FCN, STEAP3, AMPH, and NR6A1) were selected to validate the expression levels by qRT-PCR. Therefore, OA administration differentially regulated the expression of genes involved in lipid metabolism. The data showed a clinical evidence that OA could improve hyperlipidemia and also unveiled a new insight into the molecular mechanisms underlying the pharmacological effect of OA on hyperlipidemia.
China
;
Computational Biology
;
Drugs, Chinese Herbal
;
pharmacology
;
therapeutic use
;
Female
;
Gene Expression Profiling
;
Gene Expression Regulation
;
drug effects
;
Humans
;
Hyperlipidemias
;
blood
;
drug therapy
;
genetics
;
metabolism
;
Lipid Metabolism
;
drug effects
;
Male
;
Middle Aged
;
Oleanolic Acid
;
pharmacology
;
therapeutic use
;
RNA, Messenger
;
genetics
;
Treatment Outcome
10.Lipid-lowering effect of seven traditional Chinese medicine monomers in zebrafish system.
Kan CHEN ; Chang-Qian WANG ; Yu-Qi FAN ; Zhi-Hua HAN ; Yue WANG ; Lin GAO ; Hua-Su ZENG
Acta Physiologica Sinica 2017;69(1):55-60
The present study aimed to study lipid-lowering effect of seven traditional Chinese medicine monomers in zebrafish system. Zebrafish were fed with high fat diet to establish a hyperlipemia model, then fasted and bathed with seven traditional Chinese medicine monomers stigmasterol, triacontanol, chrysophanol, vanillic acid, shikimic acid, polydatin and oleanolic acid respectively. The oil red O staining was used to detect the blood lipids of zebrafish. Serum total cholesterol and triglyceride levels were detected to validate the lipid-lowering effect. The result showed that a zebrafish model of hyperlipemia could be established by feeding larvae zebrafish with high fat diet. Among the seven traditional Chinese medicine monomers, chrysophanol had lipid-lowering effect. Chrysophanol significantly reduced serum total cholesterol and triglyceride levels in adult zebrafish fed with high fat diet. Chrysophanol accelerated peristalsis frequency of zebrafish intestine and the excretion of high fat food. It is concluded that chrysophanol has lipid- lowering effect in zebrafish, and the mechanism of the effect may be due to the roles of chrysophanol in reducing lipid absorption from gastrointestinal tract and accelerating the excretion of food.
Animals
;
Anthraquinones
;
pharmacology
;
Diet, High-Fat
;
Fatty Alcohols
;
pharmacology
;
Glucosides
;
pharmacology
;
Hyperlipidemias
;
drug therapy
;
Hypolipidemic Agents
;
pharmacology
;
Larva
;
Lipids
;
blood
;
Medicine, Chinese Traditional
;
Oleanolic Acid
;
pharmacology
;
Shikimic Acid
;
pharmacology
;
Stigmasterol
;
pharmacology
;
Stilbenes
;
pharmacology
;
Vanillic Acid
;
pharmacology
;
Zebrafish

Result Analysis
Print
Save
E-mail