1.Next generation sequencing of 502 lifestyle and nutrition related Genetic Polymorphisms reveals Independent Loci for Low Serum 25-hydroxyvitamin D Levels among adult respondents of the 2013 Philippine National Nutrition Survey
Mark Pretzel Zumaraga ; Mae Anne Concepcion ; Charmaine Duante ; Marietta Rodriguez
Journal of the ASEAN Federation of Endocrine Societies 2021;36(1):56-63
Objective:
The study determined the relationship of serum vitamin D levels and 502 lifestyle and nutrition related genetic polymorphisms among adult respondents of the 2013 Philippine National Nutrition Survey (NNS).
Methodology:
A total of 1,160 adult respondents of the 2013 NNS living in the National Capital Region, Philippines were enrolled. Of the 1,160 sequenced samples, 833 passed the stringent quality control based on multiple parameters and were used for further analysis. Total serum 25-hydroxyvitamin D [25(OH)D] was determined using electro-chemiluminescence binding assay method. Genomic DNA was used for targeted next generation sequencing of 502 lifestyle and nutrition related polymorphisms. Analysis of variance, followed by Tukey post hoc analysis, was employed to compare 25(OH)D serum levels across genotypes.
Results:
Of the study participants, 56% was classified as having low serum 25(OH)D. The lower serum 25(OH)D was observed in the following gene/genotypes: KNG1 rs11924390 T/T; ANKH rs2454873 G/G; NPFFR2 rs4129733 T/G; SH2B1 rs4788102 G/A; RAP1A rs494453 T/T and CRHBP rs7728378 T/C. These genes were previously associated to the risk of osteoporosis, obesity, type 2 diabetes mellitus, and stress response.
Conclusion
Large-scale analysis of genes has shown great utility in the discovery of genetic factors that play a role in vitamin D nutrition. Interestingly, loci found in this Filipino population cohort were mostly independent from the canonical vitamin D synthesis and metabolism pathways. Understanding how genetic variations interact with nutrition and lifestyle may aid in the prevention of diseases through screening and identification of susceptible patients who would not benefit from regular supplementation with vitamin D because of genetic alterations and may also be used as basis for future development of functional food enriched with vitamin D.
Vitamin D
;
Nutrigenomics
2.Nutritional Approach for Integrative Medicine.
Hanyang Medical Reviews 2010;30(2):103-108
Nutrition is essential for our health. Various foods we take everyday are essential to live. Nutrients interact within and between all relevant biological, social and environmental systems. Because of the lack of evidence we don't realize that nutritional problems are critical. But, nutrition is a very critical for treatment and prevention of diseases. So, there is huge interest in the area of nutrition and health, including nutrigenetics and nutrigenomics. Especially, the importance of micro-nutrients is revealed in many aspects of health, especially in chronic diseases. Diabetes Mellitus is an example. Depletion and unbalanced micro-nutrients can create very severe illnesses, so an integrative approach on nutrition is very important.
Chronic Disease
;
Diabetes Mellitus
;
Integrative Medicine
;
Nutrigenomics
3.Clinical Application of Nutrigenomics.
Mi Sun KWAK ; Ki Baik HAHM ; H J JOUNG
Journal of the Korean Medical Association 2006;49(2):163-172
Nutritional genomics (nutrigenomics) is the application of high-throughput functional genomics technologies to nutritional science lying in the interface between the nutritional environment and genetic process. It seeks to provide a molecular genetic understanding of how common dietary nutrition affects health by altering the expression or structure of an individual's genetic makeup. On the other hand, nutrigenetics is significantly different from nutrigenomics since nutrigenetics has been used for decades in certain rare monogenic diseases such as phenylketonuria, and has the potential to provide a basis for personalized dietary recommendation based on the individual's specific genetic background in order to prevent common multifactorial disorders decades before their clinical manifestation. The human genome maps and SNP databases, together with the rapid development of tools suitable for investigating genetic and epigenetic changes in small tissue biopsies provide the means to begin the test hypothesis about the mechanisms by which diet influences disease risk including cancer directly in human subjects, could be inevitable flatforms for clinical application to achieve targeted therapy in near future.
Biopsy
;
Deception
;
Diet
;
Epigenomics
;
Genetic Processes
;
Genome
;
Genome, Human
;
Genomics
;
Hand
;
Humans
;
Molecular Biology
;
Nutrigenomics*
;
Nutritional Sciences
;
Phenylketonurias
4.Application of Nutrigenomics in Diabetes.
Journal of Korean Diabetes 2016;17(4):266-270
Diabetes mellitus (DM) is considered a global pandemic and its incidence continues to grow worldwide. The most common treatments for controlling diabetes focus on glucose control as a means to reduce long-term complications. Major changes in diet have taken place over the past 10,000 years since the beginning of the Agricultural Revolution: however, human genes have not changed. We now live in a nutritional environment that differs from that for which our genetic constitution was selected. Nutrients and dietary patterns are central issues in the prevention, development and treatment of DM. Nutritional genomics studies generally focus on dietary patterns according to genetic variations, the role of gene-nutrient interactions, gene-diet-phenotype interactions and epigenetic modifications caused by nutrients; these studies facilitate an understanding of the early molecular events that occur in DM and contribute to the identification of better biomarkers and diagnostic tools for the disease. In particular, this approach will help develop tailored diets that maximize the use of nutrients and other functional ingredients present in food, which will aid in the prevention and delay of DM and its complications. Here, we provide an understanding of the role of gene variants and nutrient interactions, and discuss the importance of nutrients and dietary patterns on gene expression.
Biomarkers
;
Constitution and Bylaws
;
Diabetes Mellitus
;
Diet
;
Epigenomics
;
Gene Expression
;
Genetic Variation
;
Glucose
;
Humans
;
Incidence
;
Nutrigenomics*
;
Pandemics
;
Phenotype
;
Polymorphism, Single Nucleotide
5.Effect of A One-Week Balanced Diet on Expression of Genes Related to Zinc Metabolism and Inflammation in Type 2 Diabetic Patients.
Lucia Leite LAIS ; Sancha Helena DE LIMA VALE ; Camila Alves XAVIER ; Alfredo DE ARAUJO SILVA ; Tolunay Beker AYDEMIR ; Robert J COUSINS
Clinical Nutrition Research 2016;5(1):26-32
To evaluate the effect of diet on metabolic control and zinc metabolism in patients with type 2 diabetes mellitus (T2DM). One-week balanced diet was provided to 10 Brazilians patients with T2DM. Nutritional assessment, laboratorial parameters and expression of zinc transporter and inflammatory genes in peripheral blood mononuclear cells (PBMC) were performed. Healthy non-diabetic subjects of the same demographic were recruited to provide baseline data. Diabetic patients had higher body mass index and greater fasting plasma glucose, plasma tumor necrosis factor alpha (TNFalpha) and plasma interleukin 6 (IL6) levels compared with healthy subjects. In addition, the expression of transporters 4 (ZnT4) mRNA was lower and IL6 mRNA was higher in PBMC of these diabetic patients than in healthy subject. One week after a balanced diet was provided, fasting plasma glucose decreased significantly as did TNFalpha, IL6 and Metallothionein 1 (MT1) mRNAs. No change was observed in zinc transporter expression in PBMC after the dietary intervention. A healthy eating pattern maintained for one week was able to improve metabolic control of diabetic patients by lowering fasting plasma glucose. This metabolic control may be related to down-regulation of zinc-related transcripts from PBMCs, as TNFalpha, IL6 and MT1 mRNA.
Blood Glucose
;
Body Mass Index
;
Diabetes Mellitus, Type 2
;
Diet*
;
Down-Regulation
;
Eating
;
Fasting
;
Humans
;
Inflammation*
;
Interleukin-6
;
Metabolism*
;
Metallothionein
;
Nutrigenomics
;
Nutrition Assessment
;
Plasma
;
RNA, Messenger
;
Tumor Necrosis Factor-alpha
;
Zinc*
6.Genome-Wide Association Studies of the Korea Association REsource (KARE) Consortium.
Kyung Won HONG ; Hyung Lae KIM ; Bermseok OH
Genomics & Informatics 2010;8(3):101-102
During the last decade, large community cohorts have been established by the Korea National Institutes of Health (KNIH), and enormous epidemiological and clinical data have been accumulated. Using these information and samples in the cohorts, KNIH set out to do a large-scale genome-wide association study (GWAS) in 2007, and the Korea Association REsource (KARE) consortium was launched to analyze the data to identify the underlying genetic risk factors of diseases and diverse health indexes, such as blood pressure, obesity, bone density, and blood biochemical traits. The consortium consisted of 6 research divisions, formed by 25 principal investigators in 19 organizations, including 18 universities, 2 institutes, and 1 company. Each division focused on one of the following subjects: the identification of genetic factors, the statistical analysis of gene-gene interactions, the genetic epidemiology of gene-environment interactions, copy number variation, the bioinformatics related to a GWAS, and a GWAS of nutrigenomics. In this special issue, the study results of the KARE consortium are provided as 9 articles. We hope that this special issue might encourage the genomics community to share data and scientists, including clinicians, to analyze the valuable Korean data of KARE.
Academies and Institutes
;
Blood Pressure
;
Bone Density
;
Coat Protein Complex I
;
Cohort Studies
;
Computational Biology
;
Gene-Environment Interaction
;
Genome-Wide Association Study
;
Genomics
;
Humans
;
Korea
;
Molecular Epidemiology
;
National Institutes of Health (U.S.)
;
Nutrigenomics
;
Obesity
;
Research Personnel
;
Risk Factors
7.The Effect of Caffeine on 3T3-L1 Adipocyte Differentiation : A Nutrigenomical Approach.
Mi Ja KIM ; Youngok KIM ; Joo Ho CHUNG ; Jong Woo KIM ; Hye Kyung KIM
The Korean Journal of Nutrition 2005;38(8):649-655
Nutrigenomics refers to research that investigates the interaction between nutrition and the human genome. Caffeine in tea and coffee is widely and routinely consumed by people. This study was performed to confirm the effect of caffeine treatment on the gene expression and cytokine profiling in 3T3-L1 adipocyte cells using microarray and protein array methodology. Treatment of caffeine in 3T3-L1 adipocyte cells increased expression of several genes related with obesity including adipocyte C1Q and collagen domain containing (ACDC), Adipsin (ADN), uncoupling protein 3 (UCP3), while glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which is known as lipid storage enzyme, was decreased by caffeine treatment. Furthermore, cytokines, such as interleukin-3 (IL-3), interleukin-12 (IL-12), interleukin-13 (IL-13), granulocyte colony stimulating factor (GCSF), granulocyte macrophage colony stimulating factor (GM-CSF) and vascular endothelial growth factor (VEGF), were decreased in caffeine treated 3T3-L1 adipocyte cells. These results provided interesting information about the genes related with caffeine and cytokine expression profiling in obesity.
Adipocytes*
;
Caffeine*
;
Coffee
;
Collagen
;
Colony-Stimulating Factors
;
Complement Factor D
;
Cytokines
;
Gene Expression
;
Genome, Human
;
Granulocyte-Macrophage Colony-Stimulating Factor
;
Granulocytes
;
Humans
;
Interleukin-12
;
Interleukin-13
;
Interleukin-3
;
Nutrigenomics
;
Obesity
;
Oxidoreductases
;
Protein Array Analysis
;
Tea
;
Vascular Endothelial Growth Factor A