1.SRY-positive 78, XY ovotesticular disorder of sex development in a wolf cloned by nuclear transfer.
Jung Taek KANG ; Hyung Jin KIM ; Hyun Ju OH ; So Gun HONG ; Jung Eun PARK ; Min Jung KIM ; Min Kyu KIM ; Goo JANG ; Dae Yong KIM ; Byeong Chun LEE
Journal of Veterinary Science 2012;13(2):211-213
Recently, we reported the three wolves cloning with normal karyotype from somatic cells of endangered male gray wolves (Canis lupus), but one wolf had female external genitalia. In this study, we conducted further clinical, histological, and genetic analyses. This cloned wolf had a normal uterus but developed ovotestis. Through molecular analysis of the SRY gene, a mutation in the coding sequence of SRY gene could be excluded as a cause of intersexuality. This is the first report of a cloned wolf with a 78, XY ovotesticular disorder affecting sexual development characterized by bilateral ovotestes.
Animals
;
Cloning, Organism/*veterinary
;
Female
;
Karyotyping
;
Mutation
;
Nuclear Transfer Techniques/*veterinary
;
Ovotesticular Disorders of Sex Development/pathology/*veterinary
;
*Wolves
2.Cloned calves derived from somatic cell nuclear transfer embryos cultured in chemically defined medium or modified synthetic oviduct fluid.
Goo JANG ; So Gun HONG ; Byeong Chun LEE
Journal of Veterinary Science 2011;12(1):83-89
Somatic cell nuclear transfer (SCNT) is considered to be a critical tool for propagating valuable animals. To determine the productivity calves resulting from embryos derived with different culture media, enucleated oocytes matured in vitro were reconstructed with fetal fibroblasts, fused, and activated. The cloned embryos were cultured in modified synthetic oviduct fluid (mSOF) or a chemically defined medium (CDM) and developmental competence was monitored. After 7 days of culturing, the blastocysts were transferred into the uterine horn of estrus-synchronized recipients. SCNT embryos that were cultured in mSOF or CDM developed to the blastocysts stages at similar rates (26.6% vs. 22.5%, respectively). A total of 67 preimplantational stage embryos were transferred into 34 recipients and six cloned calves were born by caesarean section, or assisted or natural delivery. Survival of transferred blastocysts to live cloned calves in the mSOF and the CDM was 18.5% (to recipients), 9.6% (to blastocysts) and 42.9% (to recipients), 20.0% (to blastocysts), respectively. DNA analysis showed that all cloned calves were genetically identical to the donor cells. These results demonstrate that SCNT embryos cultured in CDM showed higher viability as judged by survival of the calves that came to term compared to blastocysts derived from mSOF cultures.
Animals
;
Blastocyst/physiology
;
*Cattle
;
Cloning, Organism/methods/*veterinary
;
Culture Media/chemistry
;
Embryo Culture Techniques
;
Embryo Transfer
;
Embryonic Development
;
Female
;
Fertilization in Vitro/*veterinary
;
Nuclear Transfer Techniques/*veterinary
;
Pregnancy
3.Production of cloned sei whale (Balaenoptera borealis) embryos by interspecies somatic cell nuclear transfer using enucleated pig oocytes.
Eunsong LEE ; Mohammad Musharraf Uddin BHUIYAN ; Hiroyuki WATANABE ; Kohji MATSUOKA ; Yoshihiro FUJISE ; Hajime ISHIKAWA ; Yutaka FUKUI
Journal of Veterinary Science 2009;10(4):285-292
In this study, we examined the feasibility of using subzonal cell injection with electrofusion for interspecies somatic cell nuclear transfer (iSCNT) to produce sei whale embryos and to improve their developmental capacity by investigating the effect of osmolarity and macromolecules in the culture medium on the in vitro developmental capacity. Hybrid embryos produced by the electrofusion of fetal whale fibroblasts with enucleated porcine oocytes were cultured in modified porcine zygote medium-3 to examine the effects of osmolarity and fetal serum on their in vitro developmental capacity. More than 66% of the whale somatic cells successfully fused with the porcine oocytes following electrofusion. A portion (60~81%) of the iSCNT whale embryos developed to the two- to four-cell stages, but no embryos were able to reach the blastocyst stage. This developmental arrest was not overcome by increasing the osmolarity of the medium to 360 mOsm or by the addition of fetal bovine or fetal whale serum. Our results demonstrate that sei whale-porcine hybrid embryos may be produced by SCNT using subzonal injection and electrofusion. The pig oocytes partly supported the remodeling and reprogramming of the sei whale somatic cell nuclei, but they were unable to support the development of iSCNT whale embryos to the blastocyst stage.
Animals
;
Cloning, Organism/*veterinary
;
Culture Media
;
Embryo, Mammalian
;
Karyotyping
;
Nuclear Transfer Techniques/*veterinary
;
*Oocytes
;
Swine/*embryology
;
Whales/*embryology
4.In vitro development of canine somatic cell nuclear transfer embryos in different culture media.
Dong Hoon KIM ; Jin Gu NO ; Mi Kyung CHOI ; Dong Hyeon YEOM ; Dong Kyo KIM ; Byoung Chul YANG ; Jae Gyu YOO ; Min Kyu KIM ; Hong Tea KIM
Journal of Veterinary Science 2015;16(2):233-235
The objective of the present study was to investigate the effects of three different culture media on the development of canine somatic cell nuclear transfer (SCNT) embryos. Canine cloned embryos were cultured in modified synthetic oviductal fluid (mSOF), porcine zygote medium-3 (PZM-3), or G1/G2 sequential media. Our results showed that the G1/G2 media yielded significantly higher morula and blastocyst development in canine SCNT embryos (26.1% and 7.8%, respectively) compared to PZM-3 (8.5% and 0%) or mSOF (2.3% and 0%) media. In conclusion, this study suggests that blastocysts can be produced more efficiently using G1/G2 media to culture canine SCNT embryos.
Animals
;
Blastocyst/cytology
;
Cloning, Organism/*veterinary
;
Culture Media/metabolism
;
Dogs/*embryology
;
Embryo Culture Techniques/*veterinary
;
*Embryonic Development
;
Nuclear Transfer Techniques/*veterinary
5.Program optimization for bovine somatic cells nuclear transfer.
Anmin LEI ; Xiaoling MA ; Zhimin GAO ; Yongce HU ; Jinqiang SUI ; Weiwei HUANG ; Linsen ZAN ; Zhongying DOU
Chinese Journal of Biotechnology 2009;25(9):1424-1432
To optimize program of bovine somatic nuclear transfer, we used two different enucleation procedures (by Spindle-view system & Hoechst 33342 staining), two different procedures to introduce donor nuclei (by ooplasm microinjection & electrofusion), and three different group electrofusion parameters (group 1: 1.9 kV/cm, 10 micros, two; group 2: 1.5 kV/cm, 25 micros, two; group 3: 0.6 kV/cm, 100 micros, one) to reconstruct bovine cloned embryos. The cleavation rates and blastocyst development rates of cloned embryos were used to assess the efficiency of different operational procedure. Finally, the best combination of operational procedure, that the spindle-viewer system was used for oocytes enucleating, and donor cell was electrofused into ooplasm by electrical pulse (1.9 kV/cm, 10 micros, two) to reconstruct bovine cloned embryos. Then the excellent blastocysts were transferred to fosters for producing cloned cattle 80 high-quality cloned blastocysts were transferred into 33 fosters, two cloned calves were produced. According to the results, the optimized program could be used to produce cloned cattle.
Animals
;
Cattle
;
Cell Nucleus
;
physiology
;
Cloning, Organism
;
veterinary
;
Embryo Transfer
;
methods
;
Embryo, Mammalian
;
cytology
;
physiology
;
Female
;
Microinjections
;
Nuclear Transfer Techniques
;
veterinary
;
Oocytes
;
cytology
;
physiology
6.Intrapancreatic ectopic splenic tissue found in a cloned miniature pig.
Ok Jae KOO ; Seung Kwon HA ; Sol Ji PARK ; Hee Jung PARK ; Su Jin KIM ; Daekee KWON ; Jung Taek KANG ; Joon Ho MOON ; Eun Jung PARK ; Goo JANG ; Byeong Chun LEE
Journal of Veterinary Science 2015;16(2):241-244
Somatic cell nuclear transfer (SCNT) is a cost-effective technique for producing transgenic pigs. However, abnormalities in the cloned pigs might prevent use these animals for clinical applications or disease modeling. In the present study, we generated several cloned pigs. One of the pigs was found to have intrapancreatic ectopic splenic tissue during histopathology analysis although this animal was grossly normal and genetically identical to the other cloned pigs. Ectopic splenic tissue in the pancreas is very rare, especially in animals. To the best of our knowledge, this is the first such report for cloned pigs.
Animals
;
Animals, Genetically Modified
;
Choristoma/pathology/*veterinary
;
Cloning, Organism
;
Nuclear Transfer Techniques/*veterinary
;
*Pancreas
;
Splenic Diseases/pathology/*veterinary
;
Swine
;
Swine Diseases/*pathology
;
Swine, Miniature
7.Modification of maturation condition improves oocyte maturation and in vitro development of somatic cell nuclear transfer pig embryos.
Journal of Veterinary Science 2007;8(1):81-87
This study examined effects on the developmental competence of pig oocytes after somatic cell nuclear transfer (SCNT) or parthenogenetic activation (PA) of : 1) co-culturing of oocytes with follicular shell pieces (FSP) during in vitro maturation (IVM); 2) different durations of maturation; and 3) defined maturation medium supplemented with polyvinyl alcohol (PVA; control), pig follicular fluid (pFF), cysteamine (CYS), or beta-mercaptoethanol (beta-ME). The proportion of metaphase II oocytes was increased (p < 0.05) by co-culturing with FSP compared to control oocytes (98% vs. 94%). However, blastocyst formation after SCNT was not improved by FSP coculture (9% vs. 12%). Nuclear maturation of oocytes matured for 39 or 42 h was higher (p < 0.05) than that of oocytes matured for 36 h (95-96% vs. 79%). Cleavage (83%) and blastocyst formation (26%) were significantly higher (p < 0.05) in oocytes matured for 42 h than in other groups. Supplementation of a defined maturation medium with 100 micrometer CYS or 100 micrometer beta-ME showed no stimulatory effect on oocyte maturation, embryo cleavage, or blastocyst formation after PA. beta-ME treatment during IVM decreased embryo cleavage after SCNT compared to pFF or PVA treatments, but no significant difference was found in blastocyst formation (7-16%) among the four treatment groups. The results indicated that maturation of oocytes for 42 h was beneficial for the development of SCNT embryos. Furthermore, the defined maturation system used in this study could support in vitro development of PA or SCNT embryos.
Animals
;
Cysteamine
;
Embryo Culture Techniques/*veterinary
;
Embryo, Mammalian/*physiology
;
Female
;
Follicular Fluid
;
Mercaptoethanol
;
Nuclear Transfer Techniques/*veterinary
;
Oocytes/*growth & development
;
Sus scrofa/*physiology
;
Time Factors
8.Rapamycin treatment during in vitro maturation of oocytes improves embryonic development after parthenogenesis and somatic cell nuclear transfer in pigs.
Joohyeong LEE ; Jong Im PARK ; Jung Im YUN ; Yongjin LEE ; Hwanyul YONG ; Seung Tae LEE ; Choon Keun PARK ; Sang Hwan HYUN ; Geun Shik LEE ; Eunsong LEE
Journal of Veterinary Science 2015;16(3):373-380
This study was conducted to investigate the effects of rapamycin treatment during in vitro maturation (IVM) on oocyte maturation and embryonic development after parthenogenetic activation (PA) and somatic cell nuclear transfer (SCNT) in pigs. Morphologically good (MGCOCs) and poor oocytes (MPCOCs) were untreated or treated with 1 nM rapamycin during 0-22 h, 22-42 h, or 0-42 h of IVM. Rapamycin had no significant effects on nuclear maturation and blastocyst formation after PA of MGCOCs. Blastocyst formation after PA was significantly increased by rapamycin treatment during 22-42 h and 0-42 h (46.6% and 46.5%, respectively) relative to the control (33.3%) and 0-22 h groups (38.6%) in MPCOCs. In SCNT, blastocyst formation tended to increase in MPCOCs treated with rapamycin during 0-42 h of IVM relative to untreated oocytes (20.3% vs. 14.3%, 0.05 < p < 0.1), while no improvement was observed in MGCOCs. Gene expression analysis revealed that transcript abundance of Beclin 1 and microtubule-associated protein 1 light chain 3 mRNAs was significantly increased in MPCOCs by rapamycin relative to the control. Our results demonstrated that autophagy induction by rapamycin during IVM improved developmental competence of oocytes derived from MPCOCs.
Animals
;
Embryonic Development/*drug effects
;
Female
;
In Vitro Oocyte Maturation Techniques/veterinary
;
Nuclear Transfer Techniques/*veterinary
;
Oocytes/growth & development
;
*Parthenogenesis
;
Sirolimus/*pharmacology
;
Sus scrofa/*growth & development/metabolism
9.Effect of the chemically assisted enucleation on the enucleation of sheep oocytes and the development of their reconstructed embryos.
Xiaoyan PAN ; Zhengchao WANG ; Zhixin LI ; Yuji JIN ; Zhaohua DOU ; Zhiqin GUO ; Feng WANG
Chinese Journal of Biotechnology 2009;25(4):503-508
In order to enhance the efficiency of sheep somatic cell nuclear transfer, we used a chemically assisted enucleation with colchicine to study the effects of the concentration of colchicine, the incubation time of oocytes in colchicine and the maturation time of oocytes on the enucleation rates and the development of reconstructed embryos. The results showed that 1) there were no significant differences in the rates of cytoplast protrusion and enucleation between oocytes that were incubated in colchicine (0.4 microg/mL) for 0.5 h and oocytes that were incubated in colchicine (0.4 microg/mL) for 1 h, and the rate of cytoplast protrusion can be 85.4% while the rate of cytoplast enucleation is 100%. 2) There was no significant difference in oocyte enucleation between oocytes treated with medium containing 0.2 microg/mL colchicine for 0.5 h and oocytes treated with medium containing 0.4 microg/mL colchicine for 0.5 h. 3) A maturation time of 18-23 h did not affect the rates of cytoplast protrusion and enucleation by chemically assisted enucleation, whereas the rate of enucleation of oocytes by blind enucleation was found to decrease with a prolonged incubation time. 4) The development rates of reconstructed embryos could not be influenced by these two enucleation methods, increased from oocytes matured for 21-23 h. These results demonstrate that sheep oocytes can be enucleated fast and effectively by optimized colcholine chemically assisted enucleation, which can enhance the enucleation rate of sheep oocytes and the early development of reconstructed embryos in vitro.
Animals
;
Cloning, Organism
;
methods
;
Colchicine
;
pharmacology
;
Embryo, Mammalian
;
embryology
;
Female
;
Nuclear Transfer Techniques
;
veterinary
;
Oocytes
;
cytology
;
drug effects
;
Sheep
10.Mitochondrial and DNA damage in bovine somatic cell nuclear transfer embryos.
In Sun HWANG ; Hyo Kyung BAE ; Hee Tae CHEONG
Journal of Veterinary Science 2013;14(3):235-240
The generation of reactive oxygen species (ROS) and subsequent mitochondrial and DNA damage in bovine somatic cell nuclear transfer (SCNT) embryos were examined. Bovine enucleated oocytes were electrofused with donor cells and then activated by a combination of Ca-ionophore and 6-dimethylaminopurine culture. The H2O2 and .OH radical levels, mitochondrial morphology and membrane potential (DeltaPsi), and DNA fragmentation of SCNT and in vitro fertilized (IVF) embryos at the zygote stage were analyzed. The H2O2 (35.6 +/- 1.1 pixels/embryo) and .OH radical levels (44.6 +/- 1.2 pixels/embryo) of SCNT embryos were significantly higher than those of IVF embryos (19.2 +/- 1.5 and 23.8 +/- 1.8 pixels/embryo, respectively, p < 0.05). The mitochondria morphology of SCNT embryos was diffused within the cytoplasm. The DeltaPsi of SCNT embryos was significantly lower (p < 0.05) than that of IVF embryos (0.95 +/- 0.04 vs. 1.21 +/- 0.06, red/green). Moreover, the comet tail length of SCNT embryos was longer than that of IVF embryos (515.5 +/- 26.4 microm vs. 425.6 +/- 25.0 microm, p < 0.05). These results indicate that mitochondrial and DNA damage increased in bovine SCNT embryos, which may have been induced by increased ROS levels.
Animals
;
*Apoptosis
;
Caspase 3/metabolism
;
Cattle
;
Colorimetry/veterinary
;
Comet Assay/veterinary
;
*DNA Damage
;
DNA, Mitochondrial/*genetics/metabolism
;
Embryo Transfer/veterinary
;
Embryo, Mammalian/*cytology/embryology
;
Fertilization in Vitro/veterinary
;
In Situ Nick-End Labeling/veterinary
;
Membrane Potential, Mitochondrial
;
Microscopy, Confocal/veterinary
;
Microscopy, Fluorescence/veterinary
;
Mitochondria/*metabolism
;
Nuclear Transfer Techniques/*veterinary
;
Reactive Oxygen Species/*metabolism