1.Effect of Huayu Tongluo moxibustion on learning-memory ability in rats with vascular dementia based on hippocampal Mst1/NF-κB p65 pathway.
Ping WANG ; Jun YANG ; Yu KONG ; Yating ZHANG ; Yinqiu FAN ; Haiping SHI ; Lanying LIU
Chinese Acupuncture & Moxibustion 2025;45(1):53-60
OBJECTIVE:
To observe the effects of Huayu Tongluo (transforming stasis and unblocking collaterals) moxibustion on learning-memory ability and hippocampal mammalian sterile 20-like kinase 1 (Mst1)/nuclear factor κB (NF-κB) p65 pathway related to inflammatory response in rats with vascular dementia (VD).
METHODS:
A total of 60 male Wistar rats of SPF grade were randomly divided into a sham operation group (12 rats) and a modeling group (48 rats). VD model was established by the method of modified bilateral common carotid artery permanent ligation in the modeling group. Thirty-six rats with successful modeling were randomly divided into a model group, a moxibustion group and a western medication group, with 12 rats in each group. Huayu Tongluo moxibustion was applied at "Dazhui" (GV14), "Baihui" (GV20) and "Shenting" (GV24) in the moxibustion group, 20 min each time, once a day, 7 day-intervention was as one course, and 1 day-interval was taken between two courses, for a total of 3 courses. In the western medication group, piracetam was given 0.72 mg/kg by intragastric administration, twice a day, the course of intervention was same as that of the moxibustion group. The learning-memory ability was detected by Morris water maze test; the morphology of hippocampal CA1 region was observed by HE staining; the mRNA expression of Mst1, M1 microglia markers CD86, interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α) was detected by real-time PCR; the levels of IL-6 and TNF-α in hippocampus were detected by ELISA; and the protein expression of Mst1 and NF-κB p65 in hippocampus was detected by Western blot in rats of each group.
RESULTS:
Compared with the sham operation group, the escape latency was prolonged in the model group (P<0.05); compared with the model group, the escape latency was shortened in the moxibustion group and the western medication group (P<0.05). The cells in the CA1 region of hippocampus were disordered, cell collapse and irregular nuclei could be observed in the model group; compared with the model group, the cell arrangement in the CA1 region of hippocampus was more regular, and the damage was improved in the moxibustion group and the western medication group. Compared with the sham operation group, the mRNA expression of Mst1, CD86, IL-6 and TNF-α, as well as the protein expression of Mst1, NF-κB p65 in hippocampus were increased in the model group (P<0.05). Compared with the model group, the mRNA expression of Mst1, CD86, IL-6 and TNF-α, as well as the protein expression of Mst1, NF-κB p65 in hippocampus were decreased in the moxibustion group and the western medication group (P<0.05). Compared with the sham operation group, the levels of IL-6 and TNF-α in hippocampus were increased in the model group (P<0.05). Compared with the model group, the levels of IL-6 and TNF-α in hippocampus were decreased in the moxibustion group and the western medication group (P<0.05).
CONCLUSION
Huayu Tongluo moxibustion can improve the learning-memory ability of VD rats, the mechanism may be related to regulating the activation of microglia through Mst1/NF-κB p65 pathway, reducing the release of pro-inflammatory factors i.e. IL-6 and TNF-α, so as to alleviating the damage of inflammatory factors in the hippocampus of VD rats.
Animals
;
Male
;
Rats
;
Moxibustion
;
Hippocampus/metabolism*
;
Rats, Wistar
;
Dementia, Vascular/genetics*
;
Memory/drug effects*
;
Humans
;
Transcription Factor RelA/genetics*
;
Learning
;
Protein Serine-Threonine Kinases/genetics*
;
Acupuncture Points
;
Interleukin-6/genetics*
;
Signal Transduction/drug effects*
;
Drugs, Chinese Herbal
2.Mechanism of acupuncture on cerebral ischemia-reperfusion injury via p53/SLC7A11/GPX4 signaling pathway in rat models.
Qi WANG ; Ziwen HOU ; Yaoyao LIU ; Dan WEI ; Qingjie KONG ; Xia CHEN
Chinese Acupuncture & Moxibustion 2025;45(8):1099-1110
OBJECTIVE:
To explore the neuroprotective effect and underlying mechanism of Xingnao Kaiqiao acupuncture (acupuncture for regaining consciousness and opening orifices) in the rat models of cerebral ischemia-reperfusion injury (CIRI) based on the p53 protein (p53)/solute carrier family 7 member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) signaling pathway.
METHODS:
Of 102 male Wistar rats, 20 rats were randomly collected as a sham-operation group. Using a modified external carotid artery filament insertion method, CIRI models were prepared by occluding the middle cerebral artery in the rest rats. After modeling and excluding 1 non-successfully modeled rat and 1 dead one, the other modeled rats were randomized into a model group, an agonist group, an acupuncture group, and an acupuncture + agonist group, 20 rats in each one. Xingnao Kaiqiao acupuncture therapy was delivered in the rats of the acupuncture group and the acupuncture + agonist group. The acupoints included "Shuigou" (GV26), bilateral "Neiguan" (PC6), and "Sanyinjiao" (SP6) on the affected side. Electroacupuncture was attached to "Neiguan" (PC6) and "Sanyinjiao" (SP6) on the affected side, with dense-disperse wave, a frequency of 2 Hz/15 Hz and intensity of 1 mA. The intervention was delivered twice daily, 20 min each time and for 7 consecutive days. In the agonist group and acupuncture+agonist group, p53 agonist, COTI-2 was intraperitoneally injected (15 mg/kg), once daily for 7 consecutive days. Neurological deficit was evaluated using Zausinger's six-point scale. Cerebral infarction volume was quantified by triphenyl tetrazolium chloride (TTC) staining. Histopathological changes were observed using hematoxylin-eosin (HE) staining. Iron deposition was assessed by Prussian blue staining. Mitochondrial ultrastructure in the ischemic cortex was examined under transmission electron microscopy (TEM). Serum iron (Fe2+) was measured with chromometry. Malondialdehyde (MDA) and glutathione (GSH) levels in the ischemic hippocampus were determined using thiobarbituric acid and microplate assays, respectively. The mean fluorescence intensity of reactive oxygen species (ROS) in the ischemic cortex was analyzed by flow cytometry. The mRNA and protein expression of GPX4, SLC7A11, and p53 in the ischemic hippocampus were evaluated using quantitative real-time PCR (qRT-PCR) and Western blotting, respectively.
RESULTS:
Compared with the sham-operated group, the model group exhibited the decrease in neurological deficit score (P<0.01), and the increase in cerebral infarction volume percentage (P<0.01). The changes of brain tissue were presented in extensive cellular necrosis, pyknotic and deeply-stained nuclei, and vacuolar degeneration. The iron deposition was elevated in cortex and hippocampus (P<0.01), mitochondrial membrane density increased, the cristae was broken or reduced, and the outer membrane ruptured. The levels of Fe2+ and MDA, as well as the mean flourscence intensity of ROS were elevated (P<0.01) and the level of GSH was reduced (P<0.01). The mRNA and protein expression of GPX4 and SLC7A11 was reduced (P<0.01), while that of p53 rose (P<0.01). When compared with the model group, in the agonist group, the neurological deficit score was reduced (P<0.05), the percentage of infarction volume was higher (P<0.01), the histopathological damage was further exacerbated, and the percentage of iron deposition increased in the cortex and hippocampus (P<0.01). The mitochondrial quantity decreased, the membrane density increased, the mitochondrial cristae were broken or reduced, and the outer membrane was ruptured. The levels of Fe2+ and MDA, as well as the mean flourscence intensity of ROS were higher (P<0.01, P<0.05) and the level of GSH was reduced (P<0.05). The mRNA and protein expression of GPX4 and SLC7A11 decreased (P<0.01, P<0.05), while that of p53 was elevated (P<0.01). Besides, in comparison with the model group, the neurological deficit score was higher in the acupuncture group and the acupuncture + agonist group (P<0.01, P<0.05), the percentage of cerebral infarction volume was lower in the acupuncture group (P<0.01), the pathological damage of brain tissue was alleviated in the acupuncture group and the acupuncture + agonist group, and the percentage of iron depositiondecreased in the cortex and hippocampus (P<0.01). The mitochondrial structure was relatively clear, the mitochondrial cristae were fractured or reduced mildly in the acupuncture group and the acupuncture + agonist group. The levels of Fe2+ and MDA, as well as the mean flourscence intensity of ROS were lower (P<0.01) and the level of GSH was higher (P<0.01) in the acupuncture group. The mean fluorescence intensity of ROS were dropped (P<0.01) in the acupuncture + agonist group. The mRNA expression of GPX4 and SLC7A11 was elevated (P<0.01) and that of p53 was reduced (P<0.01, P<0.05) in either the acupuncture group or the acupuncture + agonist group; the protein expression of GPX4 and SLC7A11 rose (P<0.05, P<0.01) and that of p53 was dropped (P<0.01) in the acupuncture group; and the protein expression of p53 was also lower in the acupuncture + agonist group (P<0.05). When compared with the agonist group, in the acupuncture + agonist group, neurological deficit score increased (P<0.01), the percentage of cerebral infarction volume decreased (P<0.01), the pathological brain tissue damage was reduced, the percentage of iron deposition in cortex and hippocampus decreased (P<0.01), the mitochondrial structure was relatively clear and the cristae broken or reduced slightly; the levels of Fe2+ and MDA, as well as the mean fluorescence intensity of ROS were dropped (P<0.01), while the level of GSH increased (P<0.05); the mRNA and protein expression of GPX4 and SLC7411 was elevated (P<0.01, P<0.05), and that of p53 reduced (P<0.01). In comparison with the acupuncture + agonist group, in the acupuncture group, the neurological deficit score increased (P<0.05), the percentage of cerebral infarction volume decreased (P<0.05), the pathological brain tissue damage was alleviated, the percentage of iron deposition in cortex and hippocampus decreased (P<0.01), the mitochondrial structure was normal in tendency; the levels of Fe2+ and MDA, as well as the mean fluorescence intensity of ROS were reduced (P<0.05), while the level of GSH rose (P<0.01); the mRNA and protein expression of GPX4 and SLC7411 was elevated (P<0.01, P<0.05), and that of p53 reduced (P<0.01, P<0.05).
CONCLUSION
Xingnao Kaiqiao acupuncture can alleviate neurological damage in CIRI rats, which is obtained probably by inhibiting ferroptosis through p53/SLC7A11/GPX4 pathway.
Animals
;
Reperfusion Injury/metabolism*
;
Male
;
Acupuncture Therapy
;
Rats
;
Tumor Suppressor Protein p53/genetics*
;
Brain Ischemia/metabolism*
;
Rats, Wistar
;
Signal Transduction
;
Humans
;
Phospholipid Hydroperoxide Glutathione Peroxidase/genetics*
;
Disease Models, Animal
;
Acupuncture Points
;
Amino Acid Transport System y+/genetics*
3.Targeting WEE1: a rising therapeutic strategy for hematologic malignancies.
Hao-Bo LI ; Thekra KHUSHAFA ; Chao-Ying YANG ; Li-Ming ZHU ; Xing SUN ; Ling NIE ; Jing LIU
Acta Physiologica Sinica 2025;77(5):839-854
Hematologic malignancies, including leukemia, lymphoma, and multiple myeloma, are hazardous diseases characterized by the uncontrolled proliferation of cancer cells. Dysregulated cell cycle resulting from genetic and epigenetic abnormalities constitutes one of the central events. Importantly, cyclin-dependent kinases (CDKs), complexed with their functional partner cyclins, play dominating roles in cell cycle control. Yet, efforts in translating CDK inhibitors into clinical benefits have demonstrated disappointing outcomes. Recently, mounting evidence highlights the emerging significance of WEE1 G2 checkpoint kinase (WEE1) to modulate CDK activity, and correspondingly, a variety of therapeutic inhibitors have been developed to achieve clinical benefits. Thus, WEE1 may become a promising target to modulate the abnormal cell cycle. However, its function in hematologic diseases remains poorly elucidated. In this review, focusing on hematologic malignancies, we describe the biological structure of WEE1, emphasize the latest reported function of WEE1 in the carcinogenesis, progression, as well as prognosis, and finally summarize the therapeutic strategies by targeting WEE1.
Humans
;
Protein-Tyrosine Kinases/physiology*
;
Hematologic Neoplasms/drug therapy*
;
Cell Cycle Proteins/antagonists & inhibitors*
;
Nuclear Proteins/antagonists & inhibitors*
;
Cyclin-Dependent Kinases
;
Molecular Targeted Therapy
;
Animals
4.Mechanism of immediate administration of Angong Niuhuang Pills in intervention of traumatic brain injury based on metabolomics and transcriptomics.
Xiao-Tong ZHU ; Liang-Liang TIAN ; Jing-Jing ZHANG ; Hong-Jun YANG
China Journal of Chinese Materia Medica 2025;50(10):2750-2760
This study integrates metabolomics and transcriptomics to explore the immediate effects of Angong Niuhuang Pills(ANP) in intervening traumatic brain injury(TBI) in rats. A TBI model was successfully established in rats using the optimized Feeney free-fall impact technique. Rats were randomly divided into sham operation(sham) group, model(Mod) group, positive drug(piracetam) group, ANP low-dose(ANP-L) group, and ANP high-dose(ANP-H) group according to a random number table. Nissl staining and immunofluorescence were used to count the number of Nissl bodies and detect B-cell lymphoma-2(Bcl-2) gene, caspase-3, and tumor protein 53(TP53) expression in brain tissue, and enzyme-linked immunosorbent assay(ELISA) was used to measure prostaglandin-endoperoxide synthase 2(PTGS2) level in rat brain tissue. Metabolomics and transcriptomics analyses were conducted for brain tissue from sham, Mod, and ANP-H groups. Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses were carried out to indicate the mechanisms of ANP in the intervention of TBI. Integrative metabolomics and transcriptomics analysis revealed the metabolic pathways involved in ANP's intervention in TBI. The results showed that ANP significantly increased the number of Nissl bodies in TBI rat brain tissue, upregulated Bcl-2 expression, and downregulated the levels of caspase-3, TP53, and PTGS2. Compared to the Mod group, the ANP-H group significantly upregulated 12 differential metabolites(DMs) and downregulated 25 DMs. Five key metabolic pathways were identified, including glycerophospholipid metabolism, pyrimidine metabolism, glycine, threonine, and serine metabolism, arginine and proline metabolism, and D-amino acid metabolism. Transcriptomics identified 730 upregulated and 612 downregulated differentially expressed genes(DEGs). Enrichment analysis highlighted that biological functions related to inflammatory responses and apoptotic processes, and key signaling pathways, including phosphoinositide 3-kinase(PI3K)/protein kinase B(Akt) and mitogen-activated protein kinase(MAPK) were significantly enriched. The data of transcriptomics and metabolomics pinpointed three key metabolic pathways, i.e., glycerophospholipid metabolism, pyrimidine metabolism, and glycine, threonine, and serine metabolism.
Animals
;
Drugs, Chinese Herbal/administration & dosage*
;
Rats
;
Brain Injuries, Traumatic/metabolism*
;
Male
;
Metabolomics
;
Rats, Sprague-Dawley
;
Transcriptome/drug effects*
;
Cyclooxygenase 2/genetics*
;
Brain/metabolism*
;
Caspase 3/genetics*
;
Humans
;
Tumor Suppressor Protein p53/genetics*
5.Mechanism of 4-methylcatechol in inhibiting fibroblast-like synoviocyte migration and suppressing inflammatory responses in treatment of rheumatoid arthritis.
Zhendong YING ; Peng WANG ; Lei ZHANG ; Dailing CHEN ; Qiuru WANG ; Qibin LIU ; Tiantian TANG ; Changjun CHEN ; Qingwei MA
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(8):1051-1060
OBJECTIVE:
To investigate the effects of 4-methylcatechol (4MC) on the migration and inflammatory response in rheumatoid arthritis (RA) fibroblast-like synoviocytes (FLS), as well as its underlying mechanisms of action.
METHODS:
RA-FLS was isolated from synovial tissue donated by RA patients, and the optimal concentration of 4MC was determined by cell counting kit 8 method for subsequent experiments, and the effect of 4MC on the migratory ability of RA-FLS was evaluated via a cell scratch assay. An inflammation model of RA-FLS was induced by tumor necrosis factor α (TNF-α). Real-time fluorescence quantitative PCR and ELISA were employed to detect the gene and protein expression levels of interleukin-1β (IL-1β) and IL-6 in RA-FLS and their culture supernatants, respectively, thereby investigating the anti-inflammatory effects of 4MC. Western blot was used to examine the expressions of nuclear factor κB (NF-κB) signaling pathway-related proteins, including inhibitor of NF-κB-α (IKBα), phosphorylated (P)-IκBα, NF-κB-inducing kinase α (IKKα), P-IKKαβ, P-p65, and p65. Cellular immunofluorescence was utilized to detect the expression and localization of p65 in RA-FLS, exploring whether 4MC exerts its anti-inflammatory effects by regulating the NF-κB signaling pathway. Finally, a collagen-induced arthritis (CIA) mouse model was established. The anti-RA effect of 4MC in vivo was evaluated by gross observation and histological examination.
RESULTS:
4MC inhibited RA-FLS migration in a concentration-dependent manner. In the TNF-α-induced RA-FLS inflammation model, 4MC significantly decreased the gene and protein expression levels of IL-1β and IL-6. Furthermore, 4MC markedly reduced the ratios of P-IΚBα/IΚBα, P-IKKαβ/IKKα, and P-p65/p65, thereby blocking the transcriptional activity of p65 by inhibiting its nuclear translocation. This mechanism effectively suppressed the activation of the TNF-α-mediated NF-κB signaling pathway. Animal studies demonstrated that 4MC [10 mg/(kg·day)] significantly lowered serum levels of IL-1β, IL-6, and TNF-α, and alleviated arthritis severity and bone destruction in CIA mice.
CONCLUSION
4MC not only inhibits the migration of RA-FLS but also mitigates their inflammatory response by suppressing the NF-κB signaling pathway, thereby effectively exerting its anti-RA effects.
Synoviocytes/metabolism*
;
Arthritis, Rheumatoid/metabolism*
;
Animals
;
Cell Movement/drug effects*
;
Humans
;
Catechols/therapeutic use*
;
Fibroblasts/drug effects*
;
Mice
;
Tumor Necrosis Factor-alpha/pharmacology*
;
Interleukin-1beta/metabolism*
;
Interleukin-6/metabolism*
;
Signal Transduction/drug effects*
;
NF-kappa B/metabolism*
;
Transcription Factor RelA/metabolism*
;
Synovial Membrane/cytology*
;
Cells, Cultured
;
Male
;
Arthritis, Experimental
;
Anti-Inflammatory Agents/pharmacology*
;
NF-KappaB Inhibitor alpha
;
Inflammation
6.Molecular mechanisms of TPT1-AS1 in regulating epithelial ovarian cancer cell invasion, migration, and angiogenesis by targeting the miR-324/TWIST1 axis.
Chinese Journal of Cellular and Molecular Immunology 2025;41(6):536-543
Objective To explore the mechanism of TPT1-AS1 targeting miR-324/TWIST1 axis to regulate the proliferation, invasion, migration and angiogenesis of epithelial ovarian cancer (EOC) cells, thereby affecting ovarian cancer (OC) progression. Methods RT-qPCR was used to detect the expression of TPT1-AS1 and miR-324 in 29 OC lesions and adjacent tissue samples. The two OC cell models of TPT1-AS1 overexpression and miRNA324 knockdown were constructed, and the cell proliferation, invasion and migration abilities were detected by CCK-8, TranswellTM and scratch test. Western blot analysis was used to detect the protein expression levels of TWIST1, epithelial cadherin (E-cadherin), Vimentin, and vascular endothelial growth factor A (VEGF-A) in OC cells. Fluorescence in situ hybridization (FISH) and RNA pull-down experiments were used to verify the interaction between TPT1-AS1 and miR-324. Immunohistochemistry and Targetscan bioinformatics analysis were used to verify the negative regulatory role of miR-324 in the epithelial-mesenchymal transition (EMT) process. Results The TPT1-AS1 expression was significantly higher in OC tissues than that in para-cancerous tissues, while the miR-324 expression was significantly lower. In SKOV3 cells with TPT1-AS1 overexpression, the miR-324 expression decreased significantly, and TPT1-AS1 was negatively correlated with miR-324. It was also found that TPT1-AS1 and miR-324 were co-expressed in OC cells, and there was a direct binding relationship between them. Down-regulation of miR-324 significantly promoted the proliferation, invasion and migration of SKOV3 cells. Further studies revealed that miR-324 had a binding site at the 3'-UTR end of the TWIST1, a key transcription factor for EMT. Inhibiting miR-324 expression increased the transcription level of TWIST1, leading to a decrease in E-cadherin protein expression and an increase in Vimentin protein expression. Additionally, the downregulation of miR-324 resulted in an increased expression level of VEGF-A protein, which in turn enhanced angiogenesis of OC. Conclusion TPT1-AS1 promotes EOC cell proliferation, invasion, migration and angiogenesis by negatively regulating the miR-324/TWIST1 axis, thus promoting the development of OC. These findings provide new potential targets for the diagnosis and treatment of OC.
Humans
;
MicroRNAs/metabolism*
;
Female
;
Cell Movement/genetics*
;
Ovarian Neoplasms/blood supply*
;
Twist-Related Protein 1/metabolism*
;
Cell Line, Tumor
;
Neovascularization, Pathologic/genetics*
;
Neoplasm Invasiveness
;
Carcinoma, Ovarian Epithelial/metabolism*
;
Nuclear Proteins/metabolism*
;
Cell Proliferation/genetics*
;
Epithelial-Mesenchymal Transition/genetics*
;
Gene Expression Regulation, Neoplastic
;
RNA, Long Noncoding/metabolism*
;
Cadherins/genetics*
;
Vascular Endothelial Growth Factor A/genetics*
;
Vimentin/genetics*
;
Angiogenesis
7.Effects of ROCK-siRNA transfection on Ang II-induced endothelial cell senescence and endothelial microparticles.
Kai WANG ; Yan WANG ; Tianqi CHEN ; Fang PENG ; Hui ZHOU ; Qin SHI
Chinese Journal of Cellular and Molecular Immunology 2025;41(9):778-783
Objective To investigate the effects of ROCK-siRNA transfection on endothelial cell senescence and endothelial microparticles (EMPs) induced by angiotensin II (Ang II). Methods Human umbilical vein endothelial cells (HUVECs) were treated with Ang II (1.0 μmo/L) to induce cellular senescence models, followed by transfection with ROCK-siRNA. The cells were divided into four groups: control group, model group, negative transfection control group (Ang II combined with NC-siRNA), and ROCK-siRNA transfection group (Ang II combined with ROCK-siRNA). Cellular senescence was assessed by SA-β-Gal staining. EMP levels in cell supernatants and intracellular reactive oxygen species (ROS) levels were assessed using flow cytometry. The expression levels of silenced information regulator 1(SIRT1) and p53 protein in each group were analyzed by Western blotting. Results Following ROCK-siRNA transfection, the number of senescent cells induced by Ang II was significantly reduced, accompanied by decreased CD31+ EMP levels and suppressed intracellular ROS levels. Meanwhile, the expression levels of SIRT1 were up-regulated, while the expression levels of p53 were down-regulated. Conclusion Silencing ROCK expression suppresses EMP release, reduces ROS generation, regulates the expression of SIRT1 and p53, and ultimately attenuates Ang II-induced endothelial cell senescence.
Humans
;
Angiotensin II/pharmacology*
;
Cellular Senescence/genetics*
;
Human Umbilical Vein Endothelial Cells/cytology*
;
RNA, Small Interfering/metabolism*
;
Reactive Oxygen Species/metabolism*
;
Sirtuin 1/genetics*
;
Transfection
;
Tumor Suppressor Protein p53/genetics*
;
Cell-Derived Microparticles/drug effects*
;
rho-Associated Kinases/metabolism*
;
Endothelial Cells/metabolism*
;
Cells, Cultured
8.Role of Brg1 in regulating the Wnt/β-catenin signaling pathway in a bronchopulmonary dysplasia model.
Ling GUAN ; Mao-Zhu XU ; Yao-Zheng LING ; Li-Li YANG ; Ling-Huan ZHANG ; Sha LIU ; Wen-Jing ZOU ; Zhou FU
Chinese Journal of Contemporary Pediatrics 2025;27(6):731-739
OBJECTIVES:
To investigate the role and mechanism of Brahma-related gene 1 (Brg1) in regulating the Wnt/β-catenin signaling pathway in a bronchopulmonary dysplasia (BPD) model.
METHODS:
Wild-type C57BL/6 and Brg1f1/f1 mice were randomly divided into four groups: wild-type control, wild-type BPD, Brg1f1/f1 control, and Brg1f1/f1 BPD (n=5 each). Immortalized mouse pulmonary alveolar type 2 cells (imPAC2) were cultured, and Brg1 gene was knocked down using lentivirus transfection technology. Cells were divided into three groups: control, empty vector, and Brg1 knockdown. Hematoxylin and eosin staining and immunofluorescence were used to detect pathological changes in mouse lung tissue. Western blot and real-time fluorescent quantitative PCR were used to measure Brg1 protein and mRNA expression levels in mouse lung tissue. Western blot and immunofluorescence were used to detect the expression of homeodomain-containing protein homeobox (HOPX), surfactant protein C (SPC), and Wnt/β-catenin signaling pathway proteins in mouse lung tissue and imPAC2 cells. The CCK8 assay was used to assess the proliferation of imPAC2 cells, and co-immunoprecipitation was performed to verify the interaction between Brg1 and β-catenin proteins in imPAC2 cells.
RESULTS:
Compared to the Brg1f1/f1 control group and wild-type BPD group, the Brg1f1/f1 BPD group showed increased alveolar diameter and SPC protein expression, and decreased relative density of pulmonary vasculature and HOPX protein expression (P<0.05). Compared to the control group, the Brg1 knockdown group showed increased cell proliferation ability, protein expression levels of SPC, Wnt5a and β-catenin, and β-catenin protein fluorescence intensity, along with decreased HOPX protein expression (P<0.05). An interaction between Brg1 and β-catenin proteins was confirmed.
CONCLUSIONS
The Brg1 gene may promote the proliferation of alveolar type 2 epithelial cells by regulating the Wnt/β-catenin signaling pathway, thus influencing the occurrence and development of BPD.
Animals
;
DNA Helicases/genetics*
;
Transcription Factors/genetics*
;
Wnt Signaling Pathway/physiology*
;
Nuclear Proteins/genetics*
;
Mice
;
Bronchopulmonary Dysplasia/etiology*
;
Mice, Inbred C57BL
;
beta Catenin/physiology*
;
Disease Models, Animal
;
Cell Proliferation
;
Lung/pathology*
;
Male
9.NIP7 upregulates the expression of ubiquitin-conjugating enzyme E2 C to promote tumor growth in anaplastic thyroid cancer.
Yingying GONG ; Ziwen FANG ; Yixuan WANG ; Minghua GE ; Zongfu PAN
Journal of Zhejiang University. Medical sciences 2025;54(3):372-381
OBJECTIVES:
To investigate the role of nucleolar pre-rRNA processing protein NIP7 (NIP7) in maintaining the malignant phenotype of anaplastic thyroid cancer (ATC) and its molecular mechanisms.
METHODS:
NIP7 expression in ATC tissues and its gene knock-out effects in ATC cells were analyzed using gene expression microarray (GSE33630), proteome database (IPX0008941000) and the Dependency Map database, respectively. Expression and localization of NIP7 in normal thyroid cells, papillary thyroid cancer cells, and ATC cells were detected by Western blotting. Small interfering RNA (siRNA) was transfected into ATC cells, and the knockdown efficiency of NIP7 was detected by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and Western blotting. Cell proliferation was assessed by CCK-8 assay, colony formation was evaluated by colony formation assay, and tumor growth was assessed by xenograft tumor model in nude mice. SUnSET (surface sensing of translation) assay combined with co-immunoprecipitation were employed to evaluate the effect of NIP7 silencing on ubiquitin-conjugating enzyme E2 C (UBE2C) translation. Finally, gene set enrichment analysis was used to identify shared pathways of NIP7 and UBE2C, which were validated by qRT-PCR.
RESULTS:
Compared with normal tissues and papillary thyroid cancer, NIP7 was significantly upregulated in ATC tissues, and had a gene knock-out fitness effect on different ATC cell lines. The relative protein levels of NIP7 in ATC cells were significantly higher than those in normal thyroid follicular cells, and the protein was mainly expressed in the nucleus. NIP7 silencing significantly inhibited cell proliferation and reduced colony formation. Xenograft tumor model showed that NIP7 knockdown significantly slowed down the growth of ATC xenograft, and the tumor volume and weight were significantly lower than those in the control group (all P<0.05). NIP7 silencing downregulated the protein level of UBE2C, but did not affect the expression of UBE2C mRNA. Compared to the control group, UBE2C silencing significantly inhibited ATC cells proliferation (P<0.01) and colony formation (P<0.05). UBE2C overexpression reversed the proliferation-inhibitory effect induced by NIP7 silencing (P<0.01). Gene set enrichment analysis indicated that NIP7 and UBE2C were both involved in DNA replication. NIP7 or UBE2C silencing could significantly downregulate the expression levels of DNA polymerase epsilon, catalytic subunit 2 and replication factor C4 in DNA replication pathway.
CONCLUSIONS
NIP7 promotes ATC tumor growth by upregulating UBE2C to mediate DNA replication.
Humans
;
Ubiquitin-Conjugating Enzymes/genetics*
;
Thyroid Neoplasms/genetics*
;
Thyroid Carcinoma, Anaplastic/genetics*
;
Animals
;
Mice, Nude
;
Mice
;
Cell Line, Tumor
;
Cell Proliferation
;
Up-Regulation
;
RNA, Small Interfering/genetics*
;
Nuclear Proteins/metabolism*
;
Gene Expression Regulation, Neoplastic
10.Expression and Biological Function of SPOP in Acute Myeloid Leukemia.
Xue-Ying WAN ; Jing XU ; Xiao-Li LIU ; Hong-Wei WANG
Journal of Experimental Hematology 2025;33(1):32-38
OBJECTIVE:
To study the expression of SPOP in patients with acute myeloid leukemia (AML) and its effect on proliferation, apoptosis and cycle of AML cells.
METHODS:
RT-qPCR was used to detect the expression of SPOP mRNA in bone marrow samples of patients with newly diagnosed AML and normal controls. The stable overexpression of SPOP in AML cell lines THP-1 and U937 were constructed by liposome transfection. The effect of SPOP on cell proliferation was detected by CCK-8, and the effect of SPOP on apoptosis and cell cycle was detected by flow cytometry. The expressions of anti-apoptotic protein Bcl-2 and apoptotic protein Bax, Caspase3 were detected by Western blot.
RESULTS:
The median expression level of SPOP mRNA in normal control group was 0.993 1(0.6303, 1.433), while that in AML group was 0.522 1(0.242 2, 0.723 7). The expression level of SPOP in AML group was significantly lower than that in normal control group ( P < 0.001). After the overexpression of SPOP, the proportion of apoptotic cells in the U937 overexpression group and THP-1 overexpression group was 10.9%±0.3% and 4.6%±015%, which were higher than 8.9%±0.3% and 3.0%±0.30% in the Empty Vector group, respectively (both P < 0.05). The expression of Caspase3 in U937 overexpression group and THP-1 overexpression group was 1.154±0.086 and 1.2±0.077, which were higher than 1 in Empty Vector group, respectively (both P < 0.05). The ratio of Bax/Bcl-2 in U937 overexpression group and THP-1 overexpression group was 1.328±0.057 and 1.669±0.15, which were higher than 1 in Empty Vector group, respectively (both P < 0.05). In the cell proliferation experiment, the number of cells in the U937 overexpression group and THP-1 overexpression group were both slightly lower than those in the Empty Vector group, but the differences were not statistically significant (P >0.05). In the cell cycle experiment, the proportion of G1 cells in the U937 overexpression group and THP-1 overexpression group were both slightly higher than those in the Empty Vector group, but the differences were not statistically significant (P >0.05).
CONCLUSION
SPOP can promote the apoptosis of leukemic cells, and its mechanism may be related to down-regulation of Bcl-2 expression and up-regulation of Bax and Caspase3 expression.
Humans
;
Leukemia, Myeloid, Acute/pathology*
;
Apoptosis
;
Repressor Proteins/genetics*
;
Cell Proliferation
;
Nuclear Proteins/genetics*
;
Cell Cycle
;
Proto-Oncogene Proteins c-bcl-2/metabolism*
;
Caspase 3/metabolism*
;
bcl-2-Associated X Protein/metabolism*
;
U937 Cells
;
Cell Line, Tumor
;
RNA, Messenger/genetics*

Result Analysis
Print
Save
E-mail