1.Impaired Nucleoporins Are Present in Sporadic Amyotrophic Lateral Sclerosis Motor Neurons that Exhibit Mislocalization of the 43-kDa TAR DNA-Binding Protein.
Hitoshi AIZAWA ; Takenari YAMASHITA ; Haruhisa KATO ; Takashi KIMURA ; Shin KWAK
Journal of Clinical Neurology 2019;15(1):62-67
BACKGROUND AND PURPOSE: Disruption of nucleoporins has been reported in the motor neurons of patients with sporadic amyotrophic lateral sclerosis (sALS). However, the precise changes in the morphology of nucleoporins associated with the pathology of the 43-kDa TAR DNA-binding protein (TDP-43) in the disease process remain unknown. We investigated the expression of nucleoporins that constitute the nuclear pore complex (NPC) in spinal motor neurons that exhibit sALS in relation to TDP-43 pathology, which is a reliable neuropathological hallmark of sALS. METHODS: Paraffin-embedded sections of the lumbar spinal cord were obtained for immunofluorescence analysis from seven control subjects and six sALS patients. Anti-TDP-43 antibody, anti-nucleoporin p62 (NUP62) antibody, and anti-karyopherin beta 1 (KPNB1) antibody were applied as primary antibodies, and then visualized using appropriate secondary antibodies. The sections were then examined under a fluorescence microscope. RESULTS: NUP62 and KPNB1 immunoreactivity appeared as a smooth round rim bordering the nuclear margin in normal spinal motor neurons that exhibited nuclear TDP-43 immunoreactivity. sALS spinal motor neurons with apparent TDP-43 mislocalization demonstrated irregular, disrupted nuclear staining for NUP62 or KPNB1. Some atrophic sALS spinal motor neurons with TDP-43 mislocalization presented no NUP62 immunoreactivity. CONCLUSIONS: Our findings suggest a close relationship between NPC alterations and TDP-43 pathology in the degenerative process of the motor neurons of sALS patients.
Amyotrophic Lateral Sclerosis*
;
Antibodies
;
Fluorescence
;
Fluorescent Antibody Technique
;
Humans
;
Motor Neurons*
;
Nuclear Pore
;
Nuclear Pore Complex Proteins*
;
Pathology
;
Spinal Cord
2.A case of Allgrove syndrome with achalasia of cardia as its first clinical phenotype caused by a new mutation of AAAS gene.
Li Ya XIONG ; Pei Yu CHEN ; Jing XIE ; Lu REN ; Hong Li WANG ; Yang CHENG ; Pei Qun WU ; Hui Wen LI ; Si Tang GONG ; Lan Lan GENG
Chinese Journal of Pediatrics 2023;61(7):648-650
3.Interaction of Flightless I with Nup88 and Importin β.
Shengyou LIAO ; Cuihua WANG ; Dong'e TANG ; Jinmei WEI ; Yujiao HE ; Haiting XIONG ; Fengmei XU ; Xuejuan GAO ; Xiaohui LIU ; Langxia LIU
Chinese Journal of Biotechnology 2015;31(8):1247-1254
High expression of Fightless I (FLII) is associated to multiple tumors. Based on our previous study that FLII might be involved in the nuclear export, we assessed the possible interaction of FLII with the nuclear envelop associating proteins Importin β and Nup88. We first constructed GST-FLII, GST-LRR recombinant plasmids and transformed them into the Rosetta strain to produce GST-FLII, GST-LRR fusion protein. After purification of these proteins, GST-pull down, as well as co-immunoprecipitation, were used to test the interaction of FLII with Importin β and Nup88. FLII interacted with Importin β and Nup88, and FLII LRR domain is responsible for these interactions. Thus, FLII may play a role in nuclear export through interaction with Importin β and Nup88.
Humans
;
Microfilament Proteins
;
metabolism
;
Nuclear Pore Complex Proteins
;
metabolism
;
Receptors, Cytoplasmic and Nuclear
;
metabolism
;
Recombinant Fusion Proteins
;
metabolism
;
beta Karyopherins
;
metabolism
4.The molecular mechanism for nuclear transport and its application.
Yun Hak KIM ; Myoung Eun HAN ; Sae Ock OH
Anatomy & Cell Biology 2017;50(2):77-85
Transportation between the cytoplasm and the nucleoplasm is critical for many physiological and pathophysiological processes including gene expression, signal transduction, and oncogenesis. So, the molecular mechanism for the transportation needs to be studied not only to understand cell physiological processes but also to develop new diagnostic and therapeutic targets. Recent progress in the research of the nuclear transportation (import and export) via nuclear pore complex and four important factors affecting nuclear transport (nucleoporins, Ran, karyopherins, and nuclear localization signals/nuclear export signals) will be discussed. Moreover, the clinical significance of nuclear transport and its application will be reviewed. This review will provide some critical insight for the molecular design of therapeutics which need to be targeted inside the nucleus.
Active Transport, Cell Nucleus*
;
Carcinogenesis
;
Cell Physiological Processes
;
Cytoplasm
;
Gene Expression
;
Karyopherins
;
Nuclear Localization Signals
;
Nuclear Pore
;
Nuclear Pore Complex Proteins
;
Signal Transduction
;
Transportation
8.Effects of gambogic acid on the regulation of nucleoporin Nup88 in U937 cells.
Wenxiu, SHU ; Yan, CHEN ; Jing, HE ; Guohui, CUI
Journal of Huazhong University of Science and Technology (Medical Sciences) 2007;27(4):388-92
In order to investigate the anti-leukemia effects of gambogic acid (GA) and its relation to the regulation of nucleoporin Nup88 in U937 cells in vitro, the inhibitory effect of GA on the growth of U937 cells was examined by using MTT assay. Apoptosis was detected by Annexin-V FITC/PI double-labeled cytometry. Cell cycle regulation was studied by propidium iodide method. Both flow cytometry (FCM) and RT-PCR were employed to assess the expression of Nup88, and the localization of Nup88 was determined by confocal microscopy. The results indicated that GA had strong inhibitory effect on cell proliferation and apoptosis induction activity in U937 cells in vitro in a time-and dose-dependent manner. The 24-h IC(50) value was (1.019+/-0.134) mg/L. Moreover, GA induced arrest of U937 cells in G(0)/G(1) phase. Over-expression of Nup88 was found in U937 cells, whereas GA could significantly down-regulate both the protein and mRNA levels of Nup88. Nup88 was diffusely distributed between nucleus and cytoplasm and was located at the cytoplasmic side of nuclear rim, and occasionally in cytoplasm. It is suggested that GA exerts its anti-leukemia effects by regulating the expression and distribution of nucleoporin Nup88. It promises to be new agent for the treatment of acute leukemia.
Antineoplastic Agents, Phytogenic/*pharmacology
;
Apoptosis/drug effects
;
Cell Proliferation/drug effects
;
Nuclear Pore Complex Proteins/genetics
;
Nuclear Pore Complex Proteins/*metabolism
;
RNA, Messenger/genetics
;
RNA, Messenger/metabolism
;
U937 Cells
;
Xanthones/*pharmacology
9.Deguelin regulates cell cycle and nuclear pore complex protein Nup98 and Nup88 in U937 cells in vitro.
Yan CHEN ; Hong-Li LIU ; Guo-Hui CUI ; Qiu-Ling WU ; Jing HE ; Wei-Hua CHEN
Chinese Journal of Hematology 2007;28(2):115-118
OBJECTIVETo investigate antitumor activity and molecular mechanism of deguelin to the human U937 leukaemia cells and to explore the mechanisms regulating cell cycle and nucleoporin 98 (Nup98) and nucleoporin 88 (Nup88) in vitro.
METHODSThe effects of deguelin on the growth of U937 cells were studied by MTT assay, and the cell cycle of U937 cells by a propidium iodide method. The localization of the nuclear pore complex protein Nup98 and Nup88 was checked by immunofluorescence and immunoelectron microscopy. The expressions of Nup98 and Nup88 in U937 cells were checked by flow cytometry (FCM) and Western blot respectively.
RESULTSThe proliferation of U937 cells was significantly inhibited in a time-dose dependent manner in deguelin-treated group with a 24 h IC50 value of 21.61 nmol/L and 36 h IC50 value of 17.07 nmol/L. U937 cells treated with deguelin showed reduction in the percentages of cells in G0/G1, whereas accumulation of cells in S and G2/M phase. The ratio of G1/G0 phase cells were 73.01%, 71.15%, 68.42%, 52.45%, 43.99% and 22.82%, and that of S phase cells were 17.18%, 16.30%, 18.09%, 27.56%, 31.21% and 46.85%, and that of G2/M phase cells were 9.75%, 12.31%, 13.09%, 18.99%, 24.83% and 27.79% at deguelin concentrations of 0, 5, 10, 20, 40, 80 nmol/L respectively. Nup88 and Nup98 were found on both the nuclear and cytoplasmic side of the U937 cells. The expression of Nup98 was up-regulated and Nup88 down-regulated in deguelin treated U937 cells.
CONCLUSIONDeguelin is able to inhibit the proliferation of U937 cells by regulating the cell cycle. The antitumor activity of deguelin was related to up-regulating the expression of Nup98 and down-regulating Nup88 protein.
Cell Cycle ; drug effects ; Cell Proliferation ; drug effects ; Humans ; Nuclear Pore Complex Proteins ; metabolism ; Rotenone ; analogs & derivatives ; pharmacology ; U937 Cells
10.Overexpression of CHIP in chronic myeloid leukemia K562 cells induces mitotic abnormality.
Ying GAO ; Yan WANG ; Xu-Hui ZHANG ; Guo-Zhu CHEN ; Zhi-Yan DU ; Yuan-Ji XU ; Xiao-Dan YU
Journal of Experimental Hematology 2008;16(4):763-767
This study was aimed to investigate the possible influence of a novel E3 ubiquitin ligase CHIP (carboxyl terminus of Hsc70/Hsp70-interacting protein) on biological characteristics of cancer cells. Stable overexpression models in CML K562 cells were established via lipofectamine-mediated wild type CHIP and its TPR or U-box deletion mutants gene transfection. Followed G418 pressure selection, K562-CHIP stable transfected cell clones were obtained by limited dilution. The proliferation status and cell cycle were observed by MTT assay and FACS. The expression of related proteins and morphological changes were detected by Western blot and Wright-Giemsa staining. The results showed that overexpression of wild type CHIP did not inhibit cell proliferation, but slightly increased cell ratio of G(2)/M phase. CHIP gene had no effect on the stability of BCR-ABL kinase protein. HDAC inhibitor FK228-induced BCR-ABL degradation did not enhanced by CHIP. Notably the enlarged cells and abnormal mitotic cells remarkably increased in K562 WT-CHIP cells, indicating that CHIP may involve in the regulation of mitotic process. It is concluded that wild type CHIP induces mitotic abnormity in K562 cells.
Heat-Shock Proteins
;
genetics
;
metabolism
;
Humans
;
K562 Cells
;
Mitosis
;
Nuclear Pore Complex Proteins
;
genetics
;
metabolism
;
Proto-Oncogene Proteins
;
genetics
;
metabolism
;
Sequence Deletion
;
Transfection
;
Ubiquitin-Protein Ligases
;
genetics
;
metabolism