1.Subcellular localization of GTPase of immunity-associated protein 2.
Hong Quan QIN ; You ZHENG ; Man Na WANG ; Zheng Rong ZHANG ; Zu Biao NIU ; Li MA ; Qiang SUN ; Hong Yan HUANG ; Xiao Ning WANG
Journal of Peking University(Health Sciences) 2020;52(2):221-226
OBJECTIVE:
To analyze the subcellular localization of GTPase of immunity-associated protein 2 (GIMAP2) for the further functional study.
METHODS:
In the study, we first obtained the protein sequences of GTPase of immunity-associated protein 2 (GIMAP2) from National Center for Biotechnology Information (NCBI) database, and then performed a prediction analysis of its transmembrane structure, nuclear localization signal (NLS), nuclear export signal (NES) and subcellular localization through bioinformatics online tools. GIMAP2 gene amplified by PCR was inserted into the expression vector pQCXIP-mCherry-N1 and positive clones were selected by ampicillin resistance. After using methods to extract and purify, the sequenced recombinant plasmid pQCXIP-GIMAP2-mCherry, together with the retroviral packaging plasmids VSVG and Gag/pol, was transferred into HEK293FT cells by liposomes for virus packaging. The virus supernatant was collected 48 h after transfection and directly infected the human breast cancer cell line MDA-MB-436. Immunofluorescence staining was constructed to detect the localization of endogenous and exogenous GIMAP2 in MDA-MB-436 cells. Meanwhile, green fluorescent chemical dyes were used to label mitochondria, endoplasmic reticulum, and lipid droplets in living MDA-MB-436 cells stably expressing the GIMAP2-mCherry fusion protein. Images for the three dye-labeled organelles and GIMAP2-mCherry fusion protein were captured by super-resolution microscope N-SIM.
RESULTS:
Bioinformatics analysis data showed that GIMAP2 protein composed of 337 amino acids might contain two transmembrane helix (TM) structures at the carboxyl terminus, of which TMs were estimated to contain 40-41 expected amino acids, followed by the residual protein structures toward the cytoplasmic side. NES was located at the 279-281 amino acids of the carboxyl terminus whereas NLS was not found. GIMAP2 might locate in the lumen of the endoplasmic reticulum. Sequencing results indicated that the expression vector pQCXIP-GIMAP2-mCherry was successfully constructed. Fluorescent staining confirmed that GIMAP2-mCherry fusion protein, co-localized well with endogenous GIMAP2, expressed successfully in the endoplasmic reticulum and on the surface of lipid droplets in MDA-MB-436 cells.
CONCLUSION
GIMAP2 localizes in the endoplasmic reticulum and on the surface of LDs, suggesting potential involvement of GIMAP2 in lipid metabolism.
Amino Acid Sequence
;
Cytoplasm
;
GTP Phosphohydrolases
;
Humans
;
Membrane Proteins
;
Nuclear Export Signals
;
Nuclear Localization Signals
;
Recombinant Fusion Proteins
;
Transfection
2.The mechanism of Stat3 nuclear import.
Zhong-De YE ; Bei-Fen SHEN ; Lun SONG
Chinese Journal of Biotechnology 2004;20(2):299-301
In order to investigate the mechanism of stat3 nuclear import. positioned a characterized NLS of the SV40 large T antigen into Stat3-GFP, Dstat3-GFP respectively between the C-terminus of Stat3 and the N-terminus of GFP to create Stat3-NLS-GFP and Dstat3-NLS-GFP. With NLS-GFP as the positive control, Expression of the Stat3-NLS-GFP without IL-6 stimulation and Stat3-GFP with IL-6 stimulation resulted in a predominantly nuclear localization in 293T cell. Expression of Stat3-GFP and Dstat3-NLS-GFP without IL-6 stimulation resulted in predominantly cytoplasm localization in 293T cell. The results suggest that latent Stat3 is not anchored in the cytoplasm, and that nuclear localization in response to IL-6 is facilitated by gain of an NLS function.
Active Transport, Cell Nucleus
;
Cell Nucleus
;
metabolism
;
Nuclear Localization Signals
;
Plasmids
;
metabolism
;
STAT3 Transcription Factor
;
metabolism
3.Prediction of Nuclear Targeting Proteins with Nuclear Localization Signals in Staphylococcus aureus and Nuclear Targeting of beta-lactamase in Host Cells.
Sung Hoon AHN ; Jung Hwa LEE ; Je Chul LEE
Journal of Bacteriology and Virology 2015;45(1):36-43
Nuclear targeting of bacterial proteins in host cells and subsequent interaction with nuclear molecules are an emerging pathogenic mechanism of bacteria. In this study, we predicted the nuclear targeting proteins with nuclear localization signals (NLSs) in Staphylococcus aureus using bioinformatic analysis. A total of 51 proteins of S. aureus, comprising of 24 functional and 27 hypothetical proteins, were predicted to carry putative NLSs. Among them, beta-lactamase and MsrR proteins with the putative NLSs were selected to determine the nuclear targeting in host cells. Fusion proteins of BlaZ-green fluorescent protein (GFP) were evenly distributed in the nuclei of host cells and subsequently induced host cell death. However, fusion proteins of MsrR-GFP were not localized in the nuclei of host cells In conclusion, screening of nuclear targeting proteins with NLSs and determination of their pathology in host cells may open up the new field of S. aureus pathogenesis.
Bacteria
;
Bacterial Proteins
;
beta-Lactamases*
;
Cell Death
;
Computational Biology
;
Mass Screening
;
Nuclear Localization Signals*
;
Pathology
;
Staphylococcus aureus*
4.The molecular mechanism for nuclear transport and its application.
Yun Hak KIM ; Myoung Eun HAN ; Sae Ock OH
Anatomy & Cell Biology 2017;50(2):77-85
Transportation between the cytoplasm and the nucleoplasm is critical for many physiological and pathophysiological processes including gene expression, signal transduction, and oncogenesis. So, the molecular mechanism for the transportation needs to be studied not only to understand cell physiological processes but also to develop new diagnostic and therapeutic targets. Recent progress in the research of the nuclear transportation (import and export) via nuclear pore complex and four important factors affecting nuclear transport (nucleoporins, Ran, karyopherins, and nuclear localization signals/nuclear export signals) will be discussed. Moreover, the clinical significance of nuclear transport and its application will be reviewed. This review will provide some critical insight for the molecular design of therapeutics which need to be targeted inside the nucleus.
Active Transport, Cell Nucleus*
;
Carcinogenesis
;
Cell Physiological Processes
;
Cytoplasm
;
Gene Expression
;
Karyopherins
;
Nuclear Localization Signals
;
Nuclear Pore
;
Nuclear Pore Complex Proteins
;
Signal Transduction
;
Transportation
5.A novel method for studying nuclear localization signal-mediated nuclear translocation.
Peng DENG ; Xiaowei GONG ; Yong JIANG
Journal of Southern Medical University 2012;32(8):1148-1150
OBJECTIVETo establish a new method for studying the mechanism of nuclear localization signal (NLS)-mediated nuclear translocation in living cells.
METHODSThe cells were treated with 67 mg/L 3-[(3-Cholamidopropyl)dimethylammonio]propanesulfonate (CHAPS), followed by incubation with 1 g/L wheat germ agglutinin (WGA), and their effects on interferon- γ (IFN-γ)-induced nuclear translocation of signal transducer and activator of transcription 1 (STAT1) were observed.
RESULTSTreatment with CHAPS alone had no effect on IFN-γ-induced nuclear translocation of STAT1, while this process was blocked by further WGA incubation.
CONCLUSIONWe established a new, simple but effective method for studying the mechanism of NLS-mediated nuclear translocation in living cells by perforating the cell membrane with CHAPS treatment.
Active Transport, Cell Nucleus ; Cell Nucleus ; metabolism ; Cholic Acids ; Cytological Techniques ; HeLa Cells ; Humans ; Interferon-gamma ; metabolism ; Nuclear Localization Signals ; metabolism ; STAT1 Transcription Factor ; metabolism ; Signal Transduction
6.Research advances in the Cap gene of circovirus and its encoding capsid protein.
Chinese Journal of Virology 2013;29(4):465-470
The Cap gene of antisense strand of circovirus has the most variation of the genome, and encodes a capsid protein which has the main immunogenicity. The N-terminal of capsid protein makes up of nuclear localization signal which is involved with virus location. This review summarizes the research advance of Cap gene of circovirus in the sequence characteristics, its encoding capsid protein, basic functions of the capsid protein and its interaction with MKRN1 protein, Hsp40 protein, receptor protein gClqR and complement factor C1qB protein. This paper lays a theory foundation for the further study of the capsid protein in the aspects of viral attachment, replication and transportation.
Animals
;
Capsid Proteins
;
genetics
;
immunology
;
metabolism
;
Circoviridae Infections
;
veterinary
;
virology
;
Circovirus
;
genetics
;
immunology
;
Genetic Variation
;
Genome, Viral
;
genetics
;
Nuclear Localization Signals
;
Protein Binding
;
Virus Replication
7.Nuclear localization of oligonucleotides decoy effect on nuclear factor-kappaB activity.
Yingxun LIU ; Fusheng QUAN ; Jinke WANG ; Xueyao BAI
Chinese Journal of Biotechnology 2010;26(12):1683-1689
To investigate the effect of the localization of oligonucleotides decoy (ODNs decoy) on the activation of nuclear factor-kappaB (NF-kappaB) in TNF-alpha induced HeLa cells. The mercapto group-modified nuclear localization signal (NLS) peptide was covalently conjugated to amino group-modified NF-kappaB ODNs decoy by Sulfo-SMCC cross-linker. The NLS-ODNs decoy was transfected into HeLa cells by TransME transfection reagent. The intracellular distribution of fluorescent labeled NLS-ODNs decoy was detected with a microscope. The cell viability was detected by MTT assay, and then the activity of NF-kappaB in cell nuclear extract was assayed by electrophoretic mobility shift assay (EMSA). The results showed that NLS peptide was successfully conjugated to ODNs decoy by Sulfo-SMCC cross-linker. The NLS-ODNs decoy effectively entered into nucleus with high rate of 17.9%. It was observed that the cell viability of HeLa cell was not significantly affected by the transfection of NLS-ODNs decoy, while NLS-ODNs decoy significantly inhibited the activation of NF-kappaB in TNF-alpha induced HeLa cells nuclear extracts. This experiment can provide a new covalent conjugation of NLS peptide to ODNs can effectively drive decoy into nucleus, and thus improve its inhibitory effects on the activation a transcription factor.
Base Sequence
;
Cell Nucleus
;
metabolism
;
HeLa Cells
;
Humans
;
Molecular Sequence Data
;
NF-kappa B
;
genetics
;
metabolism
;
Nuclear Localization Signals
;
genetics
;
Oligonucleotides
;
genetics
;
metabolism
;
Transfection
8.Effect of BYDV-MP nuclear localization signal on the movement of PVX.
Ji-Jun YANG ; Guo-Fu LIU ; Yong-Mei SHEN ; Xiao-Hui HUO ; Xue-Song CAO
Chinese Journal of Virology 2012;28(1):35-44
Abstract:By using PVX derived vector pGR107, the effect of BYDV-MP nuclear localization signal on the movement of PVX was studied. BYDV-MP was cloned into pGR107 using GFP as an indicator. BYDV-MP was then shown to induce the systemic infection and exacerbate the symptom of PVX through infecting Nicotiana benthamiana. When the PVX gene encoding 25kD protein, which functioned as a systematic movemnet protein,was deleted and the above experiment was repeated, the result showed that BYDV-MP could compensate the systemic movement of PVX. A serial mutants with substitutions on the fifth, sixth and seventh amino acids of BYDV-MP nuclear localization signal was further constructed. It was found that the mutants at the fifth, sixth amino acids in BYDV-MP nuclear localization signal could only delay or weaken systemic movement of PVX whereas the mutant at seventh amino acid could entirely inhibit systemic movement of PVX.
Amino Acid Sequence
;
Green Fluorescent Proteins
;
genetics
;
Luteovirus
;
physiology
;
Molecular Sequence Data
;
Nuclear Localization Signals
;
chemistry
;
physiology
;
Plant Viral Movement Proteins
;
physiology
;
Potexvirus
;
genetics
;
physiology
9.Deletion of the Importin-alpha Gene in the Breast Cancer Cell.
Byung Joo SONG ; Chin Seung KIM ; Mee Ok JIN ; Dong Hwan KIM ; Young Ho MOON ; Il Soo KIM ; Seung Tak OH ; Sang Sul CHUNG ; Jae Hak LEE ; Young Tack SONG
Journal of the Korean Surgical Society 1999;56(Suppl):947-956
BACKGROUND: BRCA1 (breast-cancer gene 1) is a tumor suppressor gene that accounts for nearly all families of both early onset breast and ovarian cancer and about 45% of families with breast cancer only. Sporadic nonhereditary breast cancer is recognized as the most common form of this malignancy. However, presence of germ-line mutations in the BRCA1 gene of these tumors is an infrequent event. The BRCA1 protein includes a ring domain and an acidic domain, both of which are characteristics of certain transcription factors, as well as two putative nuclear localization signals (NLS) that interact with importin-alpha. The normal BRCA1 protein is located in the nucleus of most breast-cell types whereas the BRCA1 protein of breast cancer cells is aberrantly localized in the cytoplasm. This mislocation of the BRCA1 protein in breast cancer cells may be due to defects in the NLS receptor-mediated pathway for the nuclear import of the BRCA1 gene product. Identification of importin-alpha mutations as a cellular protein responsible for the nuclear import of BRCA1 in breast-cancer cell lines and primary breast cancers is the focus of this investigation. METHODS: A series of 15 surgical samples of breast cancer and 3 samples of breast-cancer cell lines (Hs578T, ZR75-1, MCF-7) was assayed for the presence of the deletion mutant in importin-alpha by using both RT-PCR amplification of importin-alpha transcripts and sequencing analysis. RESULTS: Three of the 15 primary breast cancers and 1 of the 3 breast-cancer cell lines showing deletions in importin-alpha transcripts produced two different truncated transcripts. 1208 bp deletions were observed in transcripts from breast cancer (T-1, T-3) and ZR75-1, which is specified by the nucleotide 251-1458 of the transcript. Another transcript encoded by primary breast cancer (T-2) included a 1312 bp deletion in the nucleotide 61-1372 of the transcript. CONCLUSIONS: The deletions eliminated part of the importin-alpha transcript segment encoding the putative NLS-binding domain but not the importin-beta binding domain, suggesting that these deletion mutants could not bind to NLS of the BRCA1 protein. These results suggest that the composite effects of mislocationof the BRCA1 protein by deletion of the NLS-binding domain in importin-alpha may contribute to tumorigenesis in sporadic breast cancer.
Active Transport, Cell Nucleus
;
alpha Karyopherins*
;
Alternative Splicing
;
beta Karyopherins
;
BRCA1 Protein
;
Breast Neoplasms*
;
Breast*
;
Carcinogenesis
;
Cell Line
;
Cytoplasm
;
Genes, BRCA1
;
Genes, Tumor Suppressor
;
Germ-Line Mutation
;
Humans
;
Nuclear Localization Signals
;
Ovarian Neoplasms
;
Transcription Factors
10.Identification of nuclear localization signals of pseudorabies virus gene UL49.
Chinese Journal of Virology 2014;30(4):436-440
Tegument protein VP22 is encoded by Pseudorabies Virus (PRV) UL49. To identify the nuclear localization signals of UL49, it is necessary to determine the transport mechanism and biological functions of the VP22 protein. In this study, we identified two nuclear localization signals from UL49, NLS1 (5RKTRVA ADETASGARRR21) and NLS2 (241PGRKGKV247). The functional nuclear localization signal (NLS) of UL49 was identified by constructing truncated or site-specific UL49 mutants. The deletion of both NLS1 and NLS2 abrogated UL49 nuclear accumulation, whereas the deletion of NLS1 or NLS2 did not. Therefore, both NLS1 and NLS2 are critical for the nuclear localization of UL49. And our resuts showed that NLS2 is more important in this regard.
Animals
;
COS Cells
;
Cell Nucleus
;
metabolism
;
virology
;
Cercopithecus aethiops
;
Herpesvirus 1, Suid
;
chemistry
;
genetics
;
metabolism
;
Humans
;
Nuclear Localization Signals
;
Protein Transport
;
Pseudorabies
;
metabolism
;
virology
;
Viral Structural Proteins
;
chemistry
;
genetics
;
metabolism