1.Vitamin C alleviates aging defects in a stem cell model for Werner syndrome.
Ying LI ; Weizhou ZHANG ; Liang CHANG ; Yan HAN ; Liang SUN ; Xiaojun GONG ; Hong TANG ; Zunpeng LIU ; Huichao DENG ; Yanxia YE ; Yu WANG ; Jian LI ; Jie QIAO ; Jing QU ; Weiqi ZHANG ; Guang-Hui LIU
Protein & Cell 2016;7(7):478-488
Werner syndrome (WS) is a premature aging disorder that mainly affects tissues derived from mesoderm. We have recently developed a novel human WS model using WRN-deficient human mesenchymal stem cells (MSCs). This model recapitulates many phenotypic features of WS. Based on a screen of a number of chemicals, here we found that Vitamin C exerts most efficient rescue for many features in premature aging as shown in WRN-deficient MSCs, including cell growth arrest, increased reactive oxygen species levels, telomere attrition, excessive secretion of inflammatory factors, as well as disorganization of nuclear lamina and heterochromatin. Moreover, Vitamin C restores in vivo viability of MSCs in a mouse model. RNA sequencing analysis indicates that Vitamin C alters the expression of a series of genes involved in chromatin condensation, cell cycle regulation, DNA replication, and DNA damage repair pathways in WRN-deficient MSCs. Our results identify Vitamin C as a rejuvenating factor for WS MSCs, which holds the potential of being applied as a novel type of treatment of WS.
Animals
;
Ascorbic Acid
;
pharmacology
;
Cell Cycle Checkpoints
;
drug effects
;
Cell Line
;
Cellular Senescence
;
drug effects
;
DNA Damage
;
DNA Repair
;
drug effects
;
DNA Replication
;
drug effects
;
Disease Models, Animal
;
Heterochromatin
;
metabolism
;
pathology
;
Humans
;
Mesenchymal Stem Cells
;
metabolism
;
pathology
;
Mice
;
Nuclear Lamina
;
metabolism
;
pathology
;
Reactive Oxygen Species
;
metabolism
;
Telomere Homeostasis
;
drug effects
;
Werner Syndrome
;
drug therapy
;
genetics
;
metabolism