1.Standardized Uptake Value from Semiquantitative Bone Single-Photon Emission Computed Tomography/Computed Tomography in Normal Thoracic and Lumbar Vertebrae of Breast Cancer Patients
Mohd Fazrin Mohd ROHANI ; Siti Nurshahirah Mohd YONAN ; Nashrulhaq TAGILING ; Wan Mohd Nazlee Wan ZAINON ; Yusri UDIN ; Norazlina Mat NAWI
Asian Spine Journal 2020;14(5):629-638
Methods:
A total of 30 randomly selected female breast cancer patients were enrolled in this study. The SUV mean (SUVmean) and SUV maximum (SUVmax) values for 286 normal vertebrae at the thoracic and lumbar levels were calculated based on the patients’ body weight (BW), body surface area (BSA), and lean body mass (LBM). Additionally, 106 degenerative joint disease (DJD) lesions of the spine were also characterized, and both their BW SUVmean and SUVmax values were obtained. A receiver operating characteristic (ROC) curve analysis was then performed to determine the cutoff value of SUV for differentiating DJD from normal vertebrae.
Results:
The mean±standard deviations for the SUVmean and SUVmax in the normal vertebrae displayed a relatively wide variability: 3.92±0.27 and 6.51±0.72 for BW, 1.05±0.07 and 1.75±0.17 for BSA, and 2.70±0.19 and 4.50±0.44 for LBM, respectively. Generally, the SUVmean had a lower coefficient of variation than the SUVmax. For DJD, the mean±standard deviation for the BW SUVmean and SUVmax was 5.26±3.24 and 7.50±4.34, respectively. Based on the ROC curve, no optimal cutoff value was found to differentiate DJD from normal vertebrae.
Conclusions
In this study, the SUV of 99mTc-MDP was successfully determined using SPECT/CT. This research provides an approach that could potentially aid in the clinical quantification of radionuclide uptake in normal vertebrae for the management of breast cancer patients.
2.Correlation between the maximum standard uptake value and mean Hounsfield unit on single-photon emission computed tomography-computed tomography to discriminate benign and metastatic lesions among patients with breast cancer
S. Thadchaiani SAMINATHAN ; Wan Aireene Wan AHMED ; Norazlina Mat NAWI ; Nashrulhaq TAGILING ; Ilyana AZIZ ; Yusri UDIN ; Mohd Fazrin Mohd ROHANI ; Wan Mohd Nazlee Wan ZAINON ; Mohammad Khairul Azhar Abdul RAZAB
Asian Spine Journal 2024;18(3):398-406
Methods:
In total, 185 lesions were identified on bone and SPECT-CT scans from 32 patients. Lesions were classified as metastatic (109 sclerotic lesions) and benign (76 lesions) morphologically on low-dose CT. Semiquantitative analysis using SUVmax and mean HU was performed on the lesions and compared. To discriminate benign and metastatic lesions, the correlation between SUVmax and mean HU was determined using the intraclass correlation coefficients.
Results:
The SUVmax was higher in metastatic lesions (20.66±14.36) but lower in benign lesions (10.18±12.79) (p<0.001). The mean HU was lower in metastatic lesions (166.62±202.02) but higher in benign lesions (517.65±192.8) (p<0.001). A weak negative correlation was found between the SUVmax and the mean HU for benign lesions, and a weak positive correlation was noted between the SUVmax and the mean HU on malignant lesions with no statistical significance (p=0.394 and 0.312, respectively). The cutoff values obtained were 10.8 for SUVmax (82.6% sensitivity and 84.2% specificity) and 240.86 for the mean HU (98.7% sensitivity and 88.1% specificity) in differentiating benign from malignant bone lesions.
Conclusions
Semiquantitative assessment using SUVmax and HU can complement qualitative analysis. Metastatic lesions had higher SUVmax but lower mean HU than benign lesions, whereas benign lesions demonstrated higher mean HU but lower SUVmax. A weak correlation was found between the SUVmax and the mean HU on malignant and benign lesions. Cutoff values of 10.8 for the SUVmax and 240.86 for the mean HU may differentiate bone metastases from benign lesions.