1.Spinal Robotics in Adult Spinal Deformity Surgery: A Systematic Review
Kareem KHALIFEH ; Nolan J. BROWN ; Zach PENNINGTON ; Martin H. PHAM
Neurospine 2024;21(1):20-29
Spinal robotics have the potential to improve the consistency of outcomes in adult spinal deformity (ASD) surgery. The objective of this paper is to assess the accuracy of pedicle and S2 alar-iliac (S2AI) screws placed with robotic guidance in ASD patients. PubMed Central, Google Scholar, and an institutional library database were queried until May 2023. Articles were included if they described ASD correction via robotic guidance and pedicle and/or S2AI screw accuracy. Articles were excluded if they described pediatric/adolescent spinal deformity or included outcomes for both ASD and non-ASD patients without separating the data. Methodological quality was assessed using the Newcastle-Ottawa scale. Primary endpoints were pedicle screw accuracy based on the Gertzbein-Robbins Scale and self-reported accuracy percentages for S2AI screws. Data were extracted for patient demographics, operative details, and perioperative outcomes and assessed using descriptive statistics. Five studies comprising 138 patients were included (mean age 66.0 years; 85 females). A total of 1,508 screws were inserted using robotic assistance (51 S2AI screws). Two studies assessing pedicle screws reported clinically acceptable trajectory rates of 98.7% and 96.0%, respectively. Another study reported a pedicle screw accuracy rate of 95.5%. Three studies reported 100% accuracy across 51 total S2AI screws. Eight total complications and 4 reoperations were reported. Current evidence supports the application of robotics in ASD surgery as safe and effective for placement of both screw types. However, due to the paucity of data, a comprehensive assessment of its incremental benefit over other techniques cannot be made. Further work using expanded cohorts is merited.
2.Spinal Robotics in Adult Spinal Deformity Surgery: A Systematic Review
Kareem KHALIFEH ; Nolan J. BROWN ; Zach PENNINGTON ; Martin H. PHAM
Neurospine 2024;21(1):20-29
Spinal robotics have the potential to improve the consistency of outcomes in adult spinal deformity (ASD) surgery. The objective of this paper is to assess the accuracy of pedicle and S2 alar-iliac (S2AI) screws placed with robotic guidance in ASD patients. PubMed Central, Google Scholar, and an institutional library database were queried until May 2023. Articles were included if they described ASD correction via robotic guidance and pedicle and/or S2AI screw accuracy. Articles were excluded if they described pediatric/adolescent spinal deformity or included outcomes for both ASD and non-ASD patients without separating the data. Methodological quality was assessed using the Newcastle-Ottawa scale. Primary endpoints were pedicle screw accuracy based on the Gertzbein-Robbins Scale and self-reported accuracy percentages for S2AI screws. Data were extracted for patient demographics, operative details, and perioperative outcomes and assessed using descriptive statistics. Five studies comprising 138 patients were included (mean age 66.0 years; 85 females). A total of 1,508 screws were inserted using robotic assistance (51 S2AI screws). Two studies assessing pedicle screws reported clinically acceptable trajectory rates of 98.7% and 96.0%, respectively. Another study reported a pedicle screw accuracy rate of 95.5%. Three studies reported 100% accuracy across 51 total S2AI screws. Eight total complications and 4 reoperations were reported. Current evidence supports the application of robotics in ASD surgery as safe and effective for placement of both screw types. However, due to the paucity of data, a comprehensive assessment of its incremental benefit over other techniques cannot be made. Further work using expanded cohorts is merited.
3.Spinal Robotics in Adult Spinal Deformity Surgery: A Systematic Review
Kareem KHALIFEH ; Nolan J. BROWN ; Zach PENNINGTON ; Martin H. PHAM
Neurospine 2024;21(1):20-29
Spinal robotics have the potential to improve the consistency of outcomes in adult spinal deformity (ASD) surgery. The objective of this paper is to assess the accuracy of pedicle and S2 alar-iliac (S2AI) screws placed with robotic guidance in ASD patients. PubMed Central, Google Scholar, and an institutional library database were queried until May 2023. Articles were included if they described ASD correction via robotic guidance and pedicle and/or S2AI screw accuracy. Articles were excluded if they described pediatric/adolescent spinal deformity or included outcomes for both ASD and non-ASD patients without separating the data. Methodological quality was assessed using the Newcastle-Ottawa scale. Primary endpoints were pedicle screw accuracy based on the Gertzbein-Robbins Scale and self-reported accuracy percentages for S2AI screws. Data were extracted for patient demographics, operative details, and perioperative outcomes and assessed using descriptive statistics. Five studies comprising 138 patients were included (mean age 66.0 years; 85 females). A total of 1,508 screws were inserted using robotic assistance (51 S2AI screws). Two studies assessing pedicle screws reported clinically acceptable trajectory rates of 98.7% and 96.0%, respectively. Another study reported a pedicle screw accuracy rate of 95.5%. Three studies reported 100% accuracy across 51 total S2AI screws. Eight total complications and 4 reoperations were reported. Current evidence supports the application of robotics in ASD surgery as safe and effective for placement of both screw types. However, due to the paucity of data, a comprehensive assessment of its incremental benefit over other techniques cannot be made. Further work using expanded cohorts is merited.
4.Spinal Robotics in Adult Spinal Deformity Surgery: A Systematic Review
Kareem KHALIFEH ; Nolan J. BROWN ; Zach PENNINGTON ; Martin H. PHAM
Neurospine 2024;21(1):20-29
Spinal robotics have the potential to improve the consistency of outcomes in adult spinal deformity (ASD) surgery. The objective of this paper is to assess the accuracy of pedicle and S2 alar-iliac (S2AI) screws placed with robotic guidance in ASD patients. PubMed Central, Google Scholar, and an institutional library database were queried until May 2023. Articles were included if they described ASD correction via robotic guidance and pedicle and/or S2AI screw accuracy. Articles were excluded if they described pediatric/adolescent spinal deformity or included outcomes for both ASD and non-ASD patients without separating the data. Methodological quality was assessed using the Newcastle-Ottawa scale. Primary endpoints were pedicle screw accuracy based on the Gertzbein-Robbins Scale and self-reported accuracy percentages for S2AI screws. Data were extracted for patient demographics, operative details, and perioperative outcomes and assessed using descriptive statistics. Five studies comprising 138 patients were included (mean age 66.0 years; 85 females). A total of 1,508 screws were inserted using robotic assistance (51 S2AI screws). Two studies assessing pedicle screws reported clinically acceptable trajectory rates of 98.7% and 96.0%, respectively. Another study reported a pedicle screw accuracy rate of 95.5%. Three studies reported 100% accuracy across 51 total S2AI screws. Eight total complications and 4 reoperations were reported. Current evidence supports the application of robotics in ASD surgery as safe and effective for placement of both screw types. However, due to the paucity of data, a comprehensive assessment of its incremental benefit over other techniques cannot be made. Further work using expanded cohorts is merited.
5.Spinal Robotics in Adult Spinal Deformity Surgery: A Systematic Review
Kareem KHALIFEH ; Nolan J. BROWN ; Zach PENNINGTON ; Martin H. PHAM
Neurospine 2024;21(1):20-29
Spinal robotics have the potential to improve the consistency of outcomes in adult spinal deformity (ASD) surgery. The objective of this paper is to assess the accuracy of pedicle and S2 alar-iliac (S2AI) screws placed with robotic guidance in ASD patients. PubMed Central, Google Scholar, and an institutional library database were queried until May 2023. Articles were included if they described ASD correction via robotic guidance and pedicle and/or S2AI screw accuracy. Articles were excluded if they described pediatric/adolescent spinal deformity or included outcomes for both ASD and non-ASD patients without separating the data. Methodological quality was assessed using the Newcastle-Ottawa scale. Primary endpoints were pedicle screw accuracy based on the Gertzbein-Robbins Scale and self-reported accuracy percentages for S2AI screws. Data were extracted for patient demographics, operative details, and perioperative outcomes and assessed using descriptive statistics. Five studies comprising 138 patients were included (mean age 66.0 years; 85 females). A total of 1,508 screws were inserted using robotic assistance (51 S2AI screws). Two studies assessing pedicle screws reported clinically acceptable trajectory rates of 98.7% and 96.0%, respectively. Another study reported a pedicle screw accuracy rate of 95.5%. Three studies reported 100% accuracy across 51 total S2AI screws. Eight total complications and 4 reoperations were reported. Current evidence supports the application of robotics in ASD surgery as safe and effective for placement of both screw types. However, due to the paucity of data, a comprehensive assessment of its incremental benefit over other techniques cannot be made. Further work using expanded cohorts is merited.
6.Endoscopic Anterior Lumbar Interbody Fusion: Systematic Review and Meta-Analysis
Nolan J. BROWN ; Zach PENNINGTON ; Cathleen C. KUO ; Alexander M. LOPEZ ; Bryce PICTON ; Sean SOLOMON ; Oanh T. NGUYEN ; Chenyi YANG ; Evelyne K. TANTRY ; Hania SHAHIN ; Julian GENDREAU ; Stephen ALBANO ; Martin H. PHAM ; Michael Y. OH
Asian Spine Journal 2023;17(6):1139-1154
Laparoscopic anterior lumbar interbody fusion (L-ALIF), which employs laparoscopic cameras to facilitate a less invasive approach, originally gained traction during the 1990s but has subsequently fallen out of favor. As the envelope for endoscopic approaches continues to be pushed, a recurrence of interest in laparoscopic and/or endoscopic anterior approaches seems possible. Therefore, evaluating the current evidence base in regard to this approach is of much clinical relevance. To this end, a systematic literature search was performed according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines using the following keywords: “(laparoscopic OR endoscopic) AND (anterior AND lumbar).” Out of the 441 articles retrieved, 22 were selected for quantitative analysis. The primary outcome of interest was the radiographic fusion rate. The secondary outcome was the incidence of perioperative complications. Meta-analysis was performed using RStudio’s “metafor” package. Of the 1,079 included patients (mean age, 41.8±2.9 years), 481 were males (44.6%). The most common indication for L-ALIF surgery was degenerative disk disease (reported by 18 studies, 81.8%). The mean follow-up duration was 18.8±11.2 months (range, 6–43 months). The pooled fusion rate was 78.9% (95% confidence interval [CI], 68.9–90.4). Complications occurred in 19.2% (95% CI, 13.4–27.4) of L-ALIF cases. Additionally, 7.2% (95% CI, 4.6–11.4) of patients required conversion from L-ALIF to open surgery. Although L-ALIF does not appear to be supported by studies available in the literature, it is important to consider the context from which these results have been obtained. Even if these results are taken at face value, the failure of endoscopy to have a role in the ALIF approach does not mean that it should not be incorporated in posterior approaches.
7.Assessing the Fractional Curve for Proper Management of Adult Degenerative Scoliosis
Seth C. RANSOM ; Zach PENNINGTON ; Nolan J. BROWN ; Shane SHAHRESTANI ; Jessica RYVLIN ; Ali SHOUSTARI ; John C. HAGEN ; Anthony L. MIKULA ; Nikita LAKOMKIN ; Luis D. DIAZ-AGUILAR ; Benjamin D. ELDER ; Joseph A. OSORIO ; Martin H. PHAM
Neurospine 2024;21(2):458-473
Adult degenerative scoliosis (ADS) is a coronal plane deformity often accompanied by sagittal plane malalignment. Surgical correction may involve the major and/or distally-located fractional curves (FCs). Correction of the FC has been increasingly recognized as key to ameliorating radicular pain localized to the FC levels. The present study aims to summarize the literature on the rationale for FC correction in ADS. Three databases were systematically reviewed to identify all primary studies reporting the rationale for correcting the FC in ADS. Articles were included if they were English full-text studies with primary data from ADS ( ≥ 18 years old) patients. Seventy-four articles were identified, of which 12 were included after full-text review. Findings suggest FC correction with long-segment fusion terminating at L5 increases the risk of distal junctional degeneration as compared to constructs instrumenting the sacrum. Additionally, circumferential fusion offers greater FC correction, lower reoperation risk, and shorter construct length. Minimally invasive surgery (MIS) techniques may offer effective radiographic correction and improve leg pain associated with foraminal stenosis on the FC concavity, though experiences are limited. Open surgery may be necessary to achieve adequate correction of severe, highly rigid deformities. Current data support major curve correction in ASD where the FC concavity and truncal shift are concordant, suggesting that the FC contributes to the patient’s overall deformity. Circumferential fusion and the use of kickstand rods can improve correction and enhance the stability and durability of long constructs. Last, MIS techniques show promise for milder deformities but require further investigation.
8.Assessing the Fractional Curve for Proper Management of Adult Degenerative Scoliosis
Seth C. RANSOM ; Zach PENNINGTON ; Nolan J. BROWN ; Shane SHAHRESTANI ; Jessica RYVLIN ; Ali SHOUSTARI ; John C. HAGEN ; Anthony L. MIKULA ; Nikita LAKOMKIN ; Luis D. DIAZ-AGUILAR ; Benjamin D. ELDER ; Joseph A. OSORIO ; Martin H. PHAM
Neurospine 2024;21(2):458-473
Adult degenerative scoliosis (ADS) is a coronal plane deformity often accompanied by sagittal plane malalignment. Surgical correction may involve the major and/or distally-located fractional curves (FCs). Correction of the FC has been increasingly recognized as key to ameliorating radicular pain localized to the FC levels. The present study aims to summarize the literature on the rationale for FC correction in ADS. Three databases were systematically reviewed to identify all primary studies reporting the rationale for correcting the FC in ADS. Articles were included if they were English full-text studies with primary data from ADS ( ≥ 18 years old) patients. Seventy-four articles were identified, of which 12 were included after full-text review. Findings suggest FC correction with long-segment fusion terminating at L5 increases the risk of distal junctional degeneration as compared to constructs instrumenting the sacrum. Additionally, circumferential fusion offers greater FC correction, lower reoperation risk, and shorter construct length. Minimally invasive surgery (MIS) techniques may offer effective radiographic correction and improve leg pain associated with foraminal stenosis on the FC concavity, though experiences are limited. Open surgery may be necessary to achieve adequate correction of severe, highly rigid deformities. Current data support major curve correction in ASD where the FC concavity and truncal shift are concordant, suggesting that the FC contributes to the patient’s overall deformity. Circumferential fusion and the use of kickstand rods can improve correction and enhance the stability and durability of long constructs. Last, MIS techniques show promise for milder deformities but require further investigation.
9.Assessing the Fractional Curve for Proper Management of Adult Degenerative Scoliosis
Seth C. RANSOM ; Zach PENNINGTON ; Nolan J. BROWN ; Shane SHAHRESTANI ; Jessica RYVLIN ; Ali SHOUSTARI ; John C. HAGEN ; Anthony L. MIKULA ; Nikita LAKOMKIN ; Luis D. DIAZ-AGUILAR ; Benjamin D. ELDER ; Joseph A. OSORIO ; Martin H. PHAM
Neurospine 2024;21(2):458-473
Adult degenerative scoliosis (ADS) is a coronal plane deformity often accompanied by sagittal plane malalignment. Surgical correction may involve the major and/or distally-located fractional curves (FCs). Correction of the FC has been increasingly recognized as key to ameliorating radicular pain localized to the FC levels. The present study aims to summarize the literature on the rationale for FC correction in ADS. Three databases were systematically reviewed to identify all primary studies reporting the rationale for correcting the FC in ADS. Articles were included if they were English full-text studies with primary data from ADS ( ≥ 18 years old) patients. Seventy-four articles were identified, of which 12 were included after full-text review. Findings suggest FC correction with long-segment fusion terminating at L5 increases the risk of distal junctional degeneration as compared to constructs instrumenting the sacrum. Additionally, circumferential fusion offers greater FC correction, lower reoperation risk, and shorter construct length. Minimally invasive surgery (MIS) techniques may offer effective radiographic correction and improve leg pain associated with foraminal stenosis on the FC concavity, though experiences are limited. Open surgery may be necessary to achieve adequate correction of severe, highly rigid deformities. Current data support major curve correction in ASD where the FC concavity and truncal shift are concordant, suggesting that the FC contributes to the patient’s overall deformity. Circumferential fusion and the use of kickstand rods can improve correction and enhance the stability and durability of long constructs. Last, MIS techniques show promise for milder deformities but require further investigation.
10.Assessing the Fractional Curve for Proper Management of Adult Degenerative Scoliosis
Seth C. RANSOM ; Zach PENNINGTON ; Nolan J. BROWN ; Shane SHAHRESTANI ; Jessica RYVLIN ; Ali SHOUSTARI ; John C. HAGEN ; Anthony L. MIKULA ; Nikita LAKOMKIN ; Luis D. DIAZ-AGUILAR ; Benjamin D. ELDER ; Joseph A. OSORIO ; Martin H. PHAM
Neurospine 2024;21(2):458-473
Adult degenerative scoliosis (ADS) is a coronal plane deformity often accompanied by sagittal plane malalignment. Surgical correction may involve the major and/or distally-located fractional curves (FCs). Correction of the FC has been increasingly recognized as key to ameliorating radicular pain localized to the FC levels. The present study aims to summarize the literature on the rationale for FC correction in ADS. Three databases were systematically reviewed to identify all primary studies reporting the rationale for correcting the FC in ADS. Articles were included if they were English full-text studies with primary data from ADS ( ≥ 18 years old) patients. Seventy-four articles were identified, of which 12 were included after full-text review. Findings suggest FC correction with long-segment fusion terminating at L5 increases the risk of distal junctional degeneration as compared to constructs instrumenting the sacrum. Additionally, circumferential fusion offers greater FC correction, lower reoperation risk, and shorter construct length. Minimally invasive surgery (MIS) techniques may offer effective radiographic correction and improve leg pain associated with foraminal stenosis on the FC concavity, though experiences are limited. Open surgery may be necessary to achieve adequate correction of severe, highly rigid deformities. Current data support major curve correction in ASD where the FC concavity and truncal shift are concordant, suggesting that the FC contributes to the patient’s overall deformity. Circumferential fusion and the use of kickstand rods can improve correction and enhance the stability and durability of long constructs. Last, MIS techniques show promise for milder deformities but require further investigation.