1.Disruption of Microtubules Sensitizes the DNA Damage-induced Apoptosis Through Inhibiting Nuclear Factor kappaB (NF-kappaB) DNA-binding Activity.
Hyunji LEE ; Juhee JEON ; Young Sue RYU ; Jae Eun JEONG ; Sanghee SHIN ; Tiejun ZHANG ; Seong Wook KANG ; Jang Hee HONG ; Gang Min HUR
Journal of Korean Medical Science 2010;25(11):1574-1581
The massive reorganization of microtubule network involves in transcriptional regulation of several genes by controlling transcriptional factor, nuclear factor-kappa B (NF-kappaB) activity. The exact molecular mechanism by which microtubule rearrangement leads to NF-kappaB activation largely remains to be identified. However microtubule disrupting agents may possibly act in synergy or antagonism against apoptotic cell death in response to conventional chemotherapy targeting DNA damage such as adriamycin or comptothecin in cancer cells. Interestingly pretreatment of microtubule disrupting agents (colchicine, vinblastine and nocodazole) was observed to lead to paradoxical suppression of DNA damage-induced NF-kappaB binding activity, even though these could enhance NF-kappaB signaling in the absence of other stimuli. Moreover this suppressed NF-kappaB binding activity subsequently resulted in synergic apoptotic response, as evident by the combination with Adr and low doses of microtubule disrupting agents was able to potentiate the cytotoxic action through caspase-dependent pathway. Taken together, these results suggested that inhibition of microtubule network chemosensitizes the cancer cells to die by apoptosis through suppressing NF-kappaB DNA binding activity. Therefore, our study provided a possible anti-cancer mechanism of microtubule disrupting agent to overcome resistance against to chemotherapy such as DNA damaging agent.
Animals
;
Antibiotics, Antineoplastic/therapeutic use
;
*Apoptosis
;
Caspases/metabolism
;
Cell Line
;
Colchicine/pharmacology
;
DNA/metabolism
;
*DNA Damage
;
Doxorubicin/therapeutic use
;
Humans
;
Mice
;
Microtubules/chemistry/*drug effects/metabolism
;
NF-kappa B/antagonists & inhibitors/*metabolism
;
Neoplasms/drug therapy
;
Nocodazole/pharmacology
;
Protein Binding
;
Signal Transduction
;
Tubulin Modulators/*pharmacology
;
Vinblastine/pharmacology
2.Sensitivity to chemotherapeutic drugs of polyploid tumor cells induced by a spindle poison nocodazole.
Juan HAO ; Bi-bo YUAN ; Yuan-fu XU ; Juan YU ; Guo-yan LIU ; De-hua WANG
Chinese Journal of Oncology 2012;34(6):419-424
OBJECTIVETo investigate the changes of drug sensitivity of spindle poison-induced polyploid tumor cells to chemotherapeutic agents and its possible mechanism.
METHODSNocodazole in a dose of 100 ng/ml was used to induce polyploidization in a breast cancer cell line MDA-MB-231 cells. The polyploid cells (T-MDA-MB-231) were sorted by flow cytometry. The morphological changes and proliferation of T-MDA-MB-231 cells were compared with that of MDA-MB-231 cells. The cell growth inhibition was assessed by MTT assay. The cells were treated with paclitaxel, docetaxel, vincristine, epirubicin, 5-Fu, VP16 and oxaliplatin, respectively. Those cells were labeled with annexin V-FITC/PI and analyzed by flow cytometry. Bcl-2 was knocked down in T-MDA-MB-231 cells using SiRNA and their growth inhibition was evaluated by MTT assay to evaluate the reversing effect of Bcl-2-silencing on drug resistance.
RESULTSThe polyploid T-MDA-MB-231 cells grew in vitro continuously and maintained constant DNA content. They had a larger cell size, and grew more slowly than MDA-MB-231 cells. The IC(50(s)) of T-MDA-MB-231 cells were significantly higher than that of the MDA-MB-231 cells: paclitaxel: (6.37 ± 0.07) vs. (2.05 ± 0.83) µmol/L; docetaxel: (32.98 ± 1.48) vs. (11.95 ± 0.98) µmol/L; vincristine: (35.28 ± 1.66) vs. (14.58 ± 0.94) µmol/L; oxaliplatin: (19.07 ± 0.45) vs. (9.75 ± 1.05) µmol/L; 5-Fu: (85.49 ± 3.21) vs. (31.35 ± 1.51) µmol/L; and epirubicin: (0.53 ± 0.06) vs. (0.15 ± 0.01) µmol/L, (all P < 0.05). The IC(50(s)) of VP16 in T-MDA-MB-231 cells was (2.85 ± 0.50)µmol/L, significantly lower than the (12.20 ± 1.55) µmol/L in MDA-MB-231 cells (P < 0.05), and that of T-MDA-MB-231 cells after Bcl-2-knocked down by siRNA was (19.59 ± 0.48) µmol/L, significantly higher than the (12.20 ± 1.55) µmol/L in the MDA-MB-231 cells (P < 0.05). The IC(50(s)) of docetaxel of T-MDA-MB-231 cells after Bcl-2-knocked down by siRNA was (21.52 ± 0.68) µmol/L, significantly decreased and lower than that before Bcl-2 silencing (32.98 ± 1.48) µmol/L.
CONCLUSIONSOur results indicate that polyploid tumor cells induced by spindle poison Nocodazole are more resistant to most of chemotherapeutic drugs. Downregulation of Bcl-2 increases the sensitivity of polyploid cells to docetaxel. The high expression of Bcl-2 may be one of the drug resistance mechanisms of polyploid tumor cells. The polyploid tumor cells are relatively sensitive to VP16, suggesting that VP16 might be an effective candidate drug for treatment of chemoresistant polyploid tumors.
Antineoplastic Agents ; pharmacology ; Antineoplastic Agents, Phytogenic ; pharmacology ; Apoptosis ; drug effects ; Breast Neoplasms ; genetics ; metabolism ; pathology ; Cell Line, Tumor ; Cell Proliferation ; drug effects ; Down-Regulation ; Drug Resistance, Neoplasm ; Epirubicin ; pharmacology ; Etoposide ; pharmacology ; Female ; Fluorouracil ; pharmacology ; Gene Knockdown Techniques ; Humans ; Inhibitory Concentration 50 ; Nocodazole ; pharmacology ; Organoplatinum Compounds ; pharmacology ; Paclitaxel ; pharmacology ; Polyploidy ; Proto-Oncogene Proteins c-bcl-2 ; genetics ; metabolism ; RNA, Messenger ; metabolism ; RNA, Small Interfering ; genetics ; Taxoids ; pharmacology ; Vincristine ; pharmacology
3.Sec13 induces genomic instability in U2OS cells.
Choong Ryoul SIHN ; Eun Jung SUH ; Kee Ho LEE ; Sang Hoon KIM
Experimental & Molecular Medicine 2005;37(3):255-260
Sec13p has been known as an endoplasmic reticulum-Golgi transport protein. Recently, it has also been shown to be required for the formation of septation in the fission yeast Schizosaccharomyces pombe. In the present study, we focused on the role of a human homolog of Saccharomyces cerevisiae SEC13, Sec13 protein during mitosis in U2OS cells. We found that the expression of Sec13 was constant throughout the cell cycle, and localized to the kinetochores at metaphase during mitosis. By using green fluorescent protein technology, we observed that Sec13 is required for evasion of mitotic arrest in response to spindle damage, leading to G1-like phase and apoptotic cell death. In addition, cells expressing exogenous Sec13 showed giant nuclei compared to endogenous ones in the absence of nocodazole. These results demonstrate that Sec13 is involved in the regulation of the metaphase/anaphase transition and may be functionally associated with mitotic machinery to maintain genomic stability during mitosis.
Anaphase
;
Antineoplastic Agents/pharmacology
;
Cell Line, Tumor/drug effects/metabolism/pathology
;
*G1 Phase
;
*Genomic Instability
;
Green Fluorescent Proteins/metabolism
;
Humans
;
Kinetochores/metabolism
;
Membrane Proteins/*genetics/metabolism
;
Metaphase
;
Mitosis/*physiology
;
*Mitotic Spindle Apparatus
;
Nocodazole/pharmacology
;
Osteosarcoma/genetics/metabolism/pathology
;
Research Support, Non-U.S. Gov't
4.Homocysteine activates T cells by enhancing endoplasmic reticulum-mitochondria coupling and increasing mitochondrial respiration.
Juan FENG ; Silin LÜ ; Yanhong DING ; Ming ZHENG ; Xian WANG
Protein & Cell 2016;7(6):391-402
Hyperhomocysteinemia (HHcy) accelerates atherosclerosis by increasing proliferation and stimulating cytokine secretion in T cells. However, whether homocysteine (Hcy)-mediated T cell activation is associated with metabolic reprogramming is unclear. Here, our in vivo and in vitro studies showed that Hcy-stimulated splenic T-cell activation in mice was accompanied by increased levels of mitochondrial reactive oxygen species (ROS) and calcium, mitochondrial mass and respiration. Inhibiting mitochondrial ROS production and calcium signals or blocking mitochondrial respiration largely blunted Hcy-induced T-cell interferon γ (IFN-γ) secretion and proliferation. Hcy also enhanced endoplasmic reticulum (ER) stress in T cells, and inhibition of ER stress with 4-phenylbutyric acid blocked Hcy-induced T-cell activation. Mechanistically, Hcy increased ER-mitochondria coupling, and uncoupling ER-mitochondria by the microtubule inhibitor nocodazole attenuated Hcy-stimulated mitochondrial reprogramming, IFN-γ secretion and proliferation in T cells, suggesting that juxtaposition of ER and mitochondria is required for Hcy-promoted mitochondrial function and T-cell activation. In conclusion, Hcy promotes T-cell activation by increasing ER-mitochondria coupling and regulating metabolic reprogramming.
Animals
;
Calcium
;
metabolism
;
Cell Proliferation
;
drug effects
;
Cells, Cultured
;
Endoplasmic Reticulum
;
metabolism
;
Endoplasmic Reticulum Stress
;
drug effects
;
Endoribonucleases
;
metabolism
;
Female
;
Homocysteine
;
toxicity
;
Interferon-gamma
;
analysis
;
Metabolic Engineering
;
Mice
;
Mice, Inbred C57BL
;
Mitochondria
;
drug effects
;
metabolism
;
Nocodazole
;
pharmacology
;
Phenylbutyrates
;
pharmacology
;
Protein-Serine-Threonine Kinases
;
metabolism
;
Proto-Oncogene Proteins c-akt
;
metabolism
;
Reactive Oxygen Species
;
metabolism
;
T-Lymphocytes
;
cytology
;
drug effects
;
metabolism
;
eIF-2 Kinase
;
metabolism
5.IQ domain GTPase-activating protein 1 mediates the process of injury and repair in bronchial epithelial cells.
Yong-Ping WANG ; Fang WANG ; Man-Xiang WANG ; Min ZHU ; Yan MA ; Ren-Liang WU
Acta Physiologica Sinica 2008;60(3):409-418
The process of injury and repair in airway epithelium involves cell spreading and migration followed by cell proliferation. IQ domain GTPase-activating protein 1 (IQGAP1) acts in a series of cell processes, but has not been clarified in lung epithelial cells. In this study, a widely used model of injury and repair in vitro by scratching bronchial epithelial cells (BECs) was utilized to investigate the function of IQGAP1. The results showed that IQGAP1 was abundant in BECs of mouse, rat, pig and human. IQGAP1 was colocalized with tubulin cytoskeleton, but was destroyed by nocodazole, a microtubule disassembly reagent. IQGAP1 mRNA and protein expressions increased at 6-9 h after scratching. In addition, overexpression of IQGAP1 translocated β-catenin from the cytoplasm into the nucleus and activated the Tcf/Lef signal. Scratching altered the associations of IQGAP1 with β-catenin, adenomatous polyposis coli (APC) and cytoplasmic linker protein-170 (CLIP-170). Silencing IQGAP1 expression by small interference RNA (siRNA) blocked the wound closure. It is concluded that IQGAP1 signal is involved in the wound closure of BECs induced by scratching.
Adenomatous Polyposis Coli Protein
;
metabolism
;
Animals
;
Bronchi
;
cytology
;
Cell Proliferation
;
Cells, Cultured
;
Cytoskeleton
;
metabolism
;
Epithelial Cells
;
cytology
;
pathology
;
Humans
;
Mice
;
Microtubule-Associated Proteins
;
metabolism
;
Neoplasm Proteins
;
metabolism
;
Nocodazole
;
pharmacology
;
Rats
;
Swine
;
Tubulin
;
metabolism
;
beta Catenin
;
metabolism
;
ras GTPase-Activating Proteins
;
metabolism