1.Topohistology of sympathetic and parasympathetic nerve fibers in branches of the pelvic plexus: an immunohistochemical study using donated elderly cadavers.
Nobuyuki HINATA ; Keisuke HIEDA ; Hiromasa SASAKI ; Gen MURAKAMI ; Shinichi ABE ; Akio MATSUBARA ; Hideaki MIYAKE ; Masato FUJISAWA
Anatomy & Cell Biology 2014;47(1):55-65
Although the pelvic autonomic plexus may be considered a mixture of sympathetic and parasympathetic nerves, little information on its composite fibers is available. Using 10 donated elderly cadavers, we investigated in detail the topohistology of nerve fibers in the posterior part of the periprostatic region in males and the infero-anterior part of the paracolpium in females. Neuronal nitric oxide synthase (nNOS) and vasoactive intestinal polypeptide (VIP) were used as parasympathetic nerve markers, and tyrosine hydroxylase (TH) was used as a marker of sympathetic nerves. In the region examined, nNOS-positive nerves (containing nNOS-positive fibers) were consistently predominant numerically. All fibers positive for these markers appeared to be thin, unmyelinated fibers. Accordingly, the pelvic plexus branches were classified into 5 types: triple-positive mixed nerves (nNOS+, VIP+, TH+, thick myelinated fibers + or -); double-positive mixed nerves (nNOS+, VIP-, TH+, thick myelinated fibers + or -); nerves in arterial walls (nNOS-, VIP+, TH+, thick myelinated fibers-); non-parasympathetic nerves (nNOS-, VIP-, TH+, thick myelinated fibers + or -); (although rare) pure sensory nerve candidates (nNOS-, VIP-, TH-, thick myelinated fibers+). Triple-positive nerves were 5-6 times more numerous in the paracolpium than in the periprostatic region. Usually, the parasympathetic nerve fibers did not occupy a specific site in a nerve, and were intermingled with sympathetic fibers. This morphology might be the result of an "incidentally" adopted nerve fiber route, rather than a target-specific pathway.
Adrenergic Fibers
;
Aged*
;
Cadaver*
;
Female
;
Humans
;
Hypogastric Plexus*
;
Male
;
Myelin Sheath
;
Nerve Fibers*
;
Nitric Oxide Synthase Type I
;
Tyrosine 3-Monooxygenase
;
Vasoactive Intestinal Peptide
2.Nerves and fasciae in and around the paracolpium or paravaginal tissue: an immunohistochemical study using elderly donated cadavers.
Nobuyuki HINATA ; Keisuke HIEDA ; Hiromasa SASAKI ; Tetsuji KUROKAWA ; Hideaki MIYAKE ; Masato FUJISAWA ; Gen MURAKAMI ; Mineko FUJIMIYA
Anatomy & Cell Biology 2014;47(1):44-54
The paracolpium or paravaginal tissue is surrounded by the vaginal wall, the pubocervical fascia and the rectovaginal septum (Denonvilliers' fascia). To clarify the configuration of nerves and fasciae in and around the paracolpium, we examined histological sections of 10 elderly cadavers. The paracolpium contained the distal part of the pelvic autonomic nerve plexus and its branches: the cavernous nerve, the nerves to the urethra and the nerves to the internal anal sphincter (NIAS). The NIAS ran postero-inferiorly along the superior fascia of the levator ani muscle to reach the longitudinal muscle layer of the rectum. In two nulliparous and one multiparous women, the pubocervical fascia and the rectovaginal septum were distinct and connected with the superior fascia of the levator at the tendinous arch of the pelvic fasciae. In these three cadavers, the pelvic plexus and its distal branches were distributed almost evenly in the paracolpium and sandwiched by the pubocervical and Denonvilliers' fasciae. By contrast, in five multiparous women, these nerves were divided into the anterosuperior group (bladder detrusor nerves) and the postero-inferior group (NIAS, cavernous and urethral nerves) by the well-developed venous plexus in combination with the fragmented or unclear fasciae. Although the small number of specimens was a major limitation of this study, we hypothesized that, in combination with destruction of the basic fascial architecture due to vaginal delivery and aging, the pelvic plexus is likely to change from a sheet-like configuration to several bundles.
Aged*
;
Aging
;
Anal Canal
;
Autonomic Pathways
;
Cadaver*
;
Fascia*
;
Female
;
Humans
;
Hypogastric Plexus
;
Muscles
;
Rectum
;
Urethra
3.Regional differences in the density of Langerhans cells, CD8-positive T lymphocytes and CD68-positive macrophages: a preliminary study using elderly donated cadavers.
Yuya OMINE ; Nobuyuki HINATA ; Masahito YAMAMOTO ; Masaaki KASAHARA ; Satoru MATSUNAGA ; Gen MURAKAMI ; Shin Ichi ABE
Anatomy & Cell Biology 2015;48(3):177-187
To provide a better understanding of the local immune system in the face and external genitalia, i.e., the oral floor, lower lip, palpebral conjunctiva, anus and penis, we examined the distribution and density of CD1a-positve Langerhans cells, CD8-positive suppressor T lymphocytes and CD68-positive macrophages using specimens from 8 male elderly cadavers. The density of Langerhans cells showed an individual difference of more than (or almost) 10-fold in the lip (oral floor). In the oral floor, Langerhans cells were often spherical. Submucosal or subcutaneous suppressor lymphocytes, especially rich in the oral floor and penile skin, migrated into the epithelium at 4 sites, except for the anus. In the conjunctiva, macrophage migration into the epithelium was seen in all 8 specimens. The density of suppressor lymphocytes showed a significant correlation between the oral floor and the lip (r=0.78). In contrast, the anal and penile skins showed no positive correlation in the density of all three types of immunoreactive cells examined. Overall, irrespective of the wide individual differences, the oral floor and conjunctiva seemed to be characterized by a rich content of all three cell types, whereas the penile skin was characterized by an abundance of suppressor lymphocytes. Based on the tables, as mean value, the relative abundance of three different cell types were as follows; CD1a-positive Langerhans cells (anus), CD8-positive lymphocytes (penis), and CD68-positive macrophages (lip). The present observations suggest that the local immune response is highly site-dependent, with a tendency for tolerance rather than rejection.
Aged*
;
Anal Canal
;
Cadaver*
;
CD8-Positive T-Lymphocytes
;
Conjunctiva
;
Epithelium
;
Genitalia
;
Humans
;
Immune System
;
Individuality
;
Langerhans Cells*
;
Lip
;
Lymphocytes
;
Macrophages*
;
Male
;
Penis
;
Skin
;
T-Lymphocytes*
4.Distal vaginal atresia: a report of a rare type found a late-term fetus and its histological comparison with the normal pelvis
Ji Hyun KIM ; Zhe-Wu JIN ; Hiroshi ABE ; Gen MURAKAMI ; José Francisco RODRÍGUEZ-VÁZQUEZ ; Nobuyuki HINATA
Anatomy & Cell Biology 2022;55(4):475-482
Solitary distal vaginal atresia is generally caused by a transverse septum or an imperforate hymen. We found a novel type of distal vaginal atresia in a late-term fetus (gestational age approximately 28 weeks) in our histology collection. This fetus had a vaginal vestibule that was closed and covered by a thick subcutaneous tissue beneath the perineal skin in the immediately inferior or superficial side of the imperforate hymen. The uterus, uterine tube, anus, and anal canal had normal development. The urethral rhabdosphincters were well-developed and had a normal topographical relationship with the vagina, but the urethrovaginal sphincter was absent. Thus, vaginal descent seemed to occur normally and form the vestibule. However, the external orifice of the urethra consisted of a highly folded duct with hypertrophied squamous epithelium. Notably, the corpus cavernosum and crus of the clitoris had poor development and were embedded in the subcutaneous tissue, distant from the vestibule. Normally, the cloacal membrane shifts from the bottom of the urogenital sinus to the inferior aspect of the thick and elongated genital tubercle after establishment of the urorectal septum. Therefore, we speculate there was a failure in the transposition of the cloacal membrane caused by decreased elongation of the genital tubercle. The histology of this anomaly strongly suggested that the hymen does not represent a part of the cloacal membrane, but is instead a product that appears during the late recanalization of the distal vagina after vaginal descent. The transverse septum was also likely to form during this recanalization.
5.Descent of mesonephric duct to the final position of the vas deferens in human embryo and fetus.
Zhe Wu JIN ; Hiroshi ABE ; Nobuyuki HINATA ; Xiang Wu LI ; Gen MURAKAMI ; José Francisco RODRÍGUEZ-VÁZQUEZ
Anatomy & Cell Biology 2016;49(4):231-240
Because the ureter arises from the mesonephric or Wolffian duct (WD), the WD opening should migrate inferiorly along the urogenital sinus or future urethra. However, this process of descent has not been evaluated morphometrically in previous studies and we know little about intermediate morphologies for the descent. In the present work, serial sagittal sections of 15 specimens at gestational age 6–12 weeks and serial horizontal sections of 20 specimens at 6–10 weeks were analyzed. Monitoring of horizontal sections showed that, until 9 weeks, a heart-, lozenge- or oval-shape of the initial urogenital sinus remained in the bladder and urethra. Thus, the future bladder and urethra could not be distinguished by the transverse section or plane. The maximum width of the urogenital sinus or bladder at 6–10 weeks was 0.8 mm, although its supero-inferior length reached 5 mm at 10 weeks. During earlier stages, however, the medial shift of the WD was rather evident. Depending on the extent of upward growth of the bladder smooth muscle, the descent of the vas deferens became evident at 10–12 weeks. Development of the urethral rhabdosphincter likely resulted in the differentiation of urogenital sinus into the urethra and bladder before formation of the bladder neck with 3-layered smooth muscles. Development of the prostate followed these morphological changes, later accelerating the further descent of the WD opening. Because of their close topographical relationships, slight anomalies or accidents of the umbilical cord at 10–12 weeks may have a significant effect on normal anatomy.
Embryonic Structures*
;
Fetus*
;
Gestational Age
;
Human Development
;
Humans*
;
Muscle, Smooth
;
Neck
;
Prostate
;
Umbilical Cord
;
Ureter
;
Urethra
;
Urinary Bladder
;
Vas Deferens*
;
Wolffian Ducts*
6.Computed Diffusion-Weighted Imaging in Prostate Cancer: Basics, Advantages, Cautions, and Future Prospects.
Yoshiko R UENO ; Tsutomu TAMADA ; Satoru TAKAHASHI ; Utaru TANAKA ; Keitaro SOFUE ; Tomonori KANDA ; Munenobu NOGAMI ; Yoshiharu OHNO ; Nobuyuki HINATA ; Masato FUJISAWA ; Takamichi MURAKAMI
Korean Journal of Radiology 2018;19(5):832-837
Computed diffusion-weighted MRI is a recently proposed post-processing technique that produces b-value images from diffusion-weighted imaging (DWI), acquired using at least two different b-values. This article presents an argument for computed DWI for prostate cancer by viewing four aspects of DWI: fundamentals, image quality and diagnostic performance, computing procedures, and future uses.
Magnetic Resonance Imaging
;
Prostate*
;
Prostatic Neoplasms*