1.Discrimination of cultivation modes of Dendrobium nobile based on content of mineral elements and ratios of nitrogen stable isotopes.
Ming-Song LI ; Jin-Ling LI ; Zhi ZHAO ; Hua-Lei WANG ; Fu-Lai LUO ; Chun-Li LUO ; Ji-Yong YANG ; Gang DING ; Lang DENG
China Journal of Chinese Materia Medica 2023;48(3):625-635
This study explored the feasibility of mineral element content and ratios of nitrogen isotopes to discriminate the cultivation mode of Dendrobium nobile in order to provide theoretical support for the discrimination of the cultivation mode of D. nobile. The content of 11 mineral elements(N, K, Ca, P, Mg, Na, Fe, Cu, Zn, Mn, and B) and nitrogen isotope ratios in D. nobile and its substrate samples in three cultivation methods(greenhouse cultivation, tree-attached cultivation, and stone-attached cultivation) were determined. According to the analysis of variance, principal component analysis, and stepwise discriminant analysis, the samples of different cultivation types were classified. The results showed that the nitrogen isotope ratios and the content of elements except for Zn were significantly different among different cultivation types of D. nobile(P<0.05). The results of correlation analysis showed that the nitrogen isotope ratios, mineral element content, and effective component content in D. nobile were correlated with the nitrogen isotope ratio and mineral element content in the corresponding substrate samples to varying degrees. Principal component analysis can preliminarily classify the samples of D. nobile, but some samples overlapped. Through stepwise discriminant analysis, six indicators, including δ~(15)N, K, Cu, P, Na, and Ca, were screened out, which could be used to establish the discriminant model of D. nobile cultivation methods, and the overall correct discrimination rates after back-substitution test, cross-check, and external validation were all 100%. Therefore, nitrogen isotope ratios and mineral element fingerprints combined with multivariate statistical analysis could effectively discriminate the cultivation types of D. nobile. The results of this study provide a new method for the identification of the cultivation type and production area of D. nobile and an experimental basis for the quality evaluation and quality control of D. nobile.
Dendrobium
;
Minerals
;
Discriminant Analysis
;
Multivariate Analysis
;
Nitrogen Isotopes
2.Optimization and application of chemically defined medium for 13C metabolic flux analysis of Streptomyces rimosus M4018.
Long WANG ; Hongtu ZHAO ; Lan YU ; Meijin GUO ; Ju CHU ; Siliang ZHANG
Chinese Journal of Biotechnology 2014;30(4):679-683
The aim of this study is to develop a synthetic medium suitable for 13C metabolic flux analysis (13C-MFA) of Streptomyces rimosus. The cell growth rate and oxytetracycline production by S. rimosus M4018 were compared when M4018 cells were growth on the optimized chemically defined media with organic nitrogen sources or inorganic nitrogen sources. First, a synthetic medium contained KNO3 as the main nitrogen source was screened, then optimized by a response surface method. Using this new medium, the oxytetracycline yield was increased from 75.2 to 145.6 mg/L. Furthermore, based on the 13C-MFA, we identified that Entner-Doudoroff pathway does not exist in S. rimosus cells cultured in a chemically defined medium with feed of 100% 1-13C labeled glucose. This study is helpful for subsequent 13C-MFA application of S. rimosus.
Carbon Isotopes
;
analysis
;
Culture Media
;
chemistry
;
Metabolic Flux Analysis
;
Nitrogen
;
chemistry
;
Oxytetracycline
;
biosynthesis
;
Streptomyces rimosus
;
metabolism