1.Effects of different nitrogenous compounds on growth and nodulation of Abrus cantoniensis.
Rong-Shao HUANG ; Yong-Xiong YU ; Yan HU ; Xiao-Bang SHENG
China Journal of Chinese Materia Medica 2005;30(24):1906-1909
OBJECTIVEThe research aimed at the effects of different nitrogenous compounds on growth and nodulation of Abrus cantoniensis.
METHODAfter the seedlings of the herb were inoculated with rhizobia in potted culture, they were supplied with nutrition solutions which contained the three nitrogenous compounds, KNO3, NH4NO3, (NH4)2SO4 of different nitrogen concentration. The growth and nodulation of seedlings was determined after 70 days.
RESULTDifferent nitrogenous compounds were able to enhance the vegetable growth of seedlings variously. The effect of (NH4)2SO4 and NH4NO3 on growth was better than that of KNO3. Seedlings nodulation was obviously inhibited by these nitrogenous compounds. Their inhibitory effects ranked NH4NO3 > (NH4)2SO4 > KNO3. The treatments of KNO3 and the lower concentration treatments of NH4NO3 and (NH4)2 SO4 didn't inhibit the nodulation of seedlings, but the higher concentration treatment of NH4NO3 and (NH4)2SO4 severely inhibited nodulation or even made a no formation of nodule.
CONCLUSIONThe results showed that ammonium nitrogen the higher inhibitory ability to the nodulation of seedlings of A. cantoniensis than nitrate nitrogen. Therefore, the application of ammonium nitrogen fertilizer should be controlled in culture of the herb, which is in favor of increasing the function of biological nitrogen fixation and the quality of the medicinal materials of A. cantoniensis.
Abrus ; growth & development ; Ammonium Sulfate ; Biomass ; Fertilizers ; Nitrates ; Nitrogen Fixation ; physiology ; Plants, Medicinal ; growth & development ; Potassium Compounds ; Seedlings ; growth & development
2.Enhanced nitrogen removal by bioelectrochemical coupling anammox and characteristics of microbial communities.
Lai XIE ; Min YANG ; Enzhe YANG ; Zhihua LIU ; Xin GENG ; Hong CHEN
Chinese Journal of Biotechnology 2023;39(7):2719-2729
To investigate the bioelectrochemical enhanced anaerobic ammonia oxidation (anammox) nitrogen removal process, a bioelectrochemical system with coupled anammox cathode was constructed using a dual-chamber microbial electrolysis cell (MEC). Specifically, a dark incubation batch experiment was conducted at 30 ℃ with different influent total nitrogen concentrations under an applied voltage of 0.2 V, and the enhanced denitrification mechanism was investigated by combining various characterization methods such as cyclic voltammetry, electrochemical impedance spectroscopy and high-throughput sequencing methods. The results showed that the total nitrogen removal rates of 96.9%±0.3%, 97.3%±0.4% and 99.0%±0.3% were obtained when the initial total nitrogen concentration was 200, 300 and 400 mg/L, respectively. In addition, the cathode electrode biofilm showed good electrochemical activity. High-throughput sequencing results showed that the applied voltage enriched other denitrifying functional groups, including Denitratisoma, Limnobacter, and ammonia oxidizing bacteria SM1A02 and Anaerolineaceae, Nitrosomonas europaea and Nitrospira, besides the anammox bacteria. These electrochemically active microorganisms comprised of ammonium oxidizing exoelectrogens (AOE) and denitrifying electrotrophs (DNE). Together with anammox bacteria Candidatus Brocadia, they constituted the microbial community structure of denitrification system. Enhanced direct interspecies electron transfer between AOE and DNE was the fundamental reason for the further improvement of the total nitrogen removal rate of the system.
Denitrification
;
Wastewater
;
Anaerobic Ammonia Oxidation
;
Nitrogen
;
Oxidation-Reduction
;
Bioreactors/microbiology*
;
Ammonium Compounds
;
Bacteria/genetics*
;
Microbiota
;
Sewage
3.A Case of Acute Respiratory Distress Syndrome Caused by Nitric Acid Inhalation.
Dae Sung KIM ; Hye Eun YOON ; Seung Jae LEE ; Yong Hyun KIM ; So Hyang SONG ; Chi Hong KIM ; Hwa Sik MOON ; Jeong Sup SONG ; Sung Hak PARK
Tuberculosis and Respiratory Diseases 2005;59(6):690-695
Nitric acid is an oxidizing agent used in metal refining and cleaning, electroplating, and other industrial applications. Its accidental spillage generates oxides of nitrogen, including nitric oxide (NO) and nitrogen dioxide (NO2), which cause chemical pneumonitis when inhaled. The clinical presentation of a nitric acid inhalation injury depends on the duration and intensity of exposure. In mild cases, there may be no symptoms during the first few hours after exposure, or the typical symptoms of pulmonary edema can appear within 3-24 hours. However, in cases of prolonged exposure, progressive pulmonary edema develops instantaneously and patients may not survive for more than 24 hours. We report a case of a 44-year-old male who was presented with acute respiratory distress syndrome after nitric acid inhalation. He complained of cough and dyspnea of a sudden onset after inhaling nitric acid fumes at his workplace over a four-hour period. He required endotracheal intubation and mechanical ventilation due to fulminant respiratory failure. He was managed successfully with mechanical ventilation using positive end expiratory pressure and systemic corticosteroids, and recovered fully without any deterioration in his pulmonary function.
Adrenal Cortex Hormones
;
Adult
;
Cough
;
Dyspnea
;
Electroplating
;
Humans
;
Inhalation*
;
Intubation, Intratracheal
;
Male
;
Nitric Acid*
;
Nitric Oxide
;
Nitrogen
;
Nitrogen Dioxide
;
Oxides
;
Pneumonia
;
Positive-Pressure Respiration
;
Pulmonary Edema
;
Respiration, Artificial
;
Respiratory Distress Syndrome, Adult*
;
Respiratory Insufficiency
4.Effect of NH4(+) -N/NO3(-)-N ratio in applied supplementary fertilizer on nitrogen metabolism and main chemical composition of Pinellia ternata.
Long-Jiao HU ; Kang-Cai WANG ; Can-Wen LI
China Journal of Chinese Materia Medica 2013;38(13):2073-2077
OBJECTIVETo study the effect of nitrogen forms on nitrogen metabolism and main chemical composition of Pinellia ternate.
METHODThrough the soilless cultivation experiment and based at the same nitrogen level and different NH4(+) -N/NO3(-) -N ratios, nitrate reductase (NR) activity, glutamine synthetase (GS) activity, the content of nitrate nitrogen and ammonium nitrogen in different parts of P. ternate were determined. The contents of total alkaloid, free total organic acids and guanosine in the tuber were determined. The yield of bulbil and tuber was calculated.
RESULTThe test results showed that, with the NH4(+) -N/NO3(-) -N ratio increasing, the activity of nitrate reductase decreased, the content of nitrate nitrogen in the leaves, petioles and tuber increasing initially, then decreased, and the content of nitrate nitrogen in the root decreased. Meanwhile, with the NH4(+) -N/NO3(-) -N ratio increasing, the activity of glutamine synthetase in the leaves, petioles and root increased, the activity of glutamine synthetase in the tuber increasing initially, then decreased. The contents of ammonium nitrogen in the leaves, tuber and root increased initially, then decreased, and the contents of ammonium nitrogen in the petioles increased with the NH4(+)(-N/NO3(-)-N ratio increasing. The yield of bulbil and tuber were the highest at the NH4(+)-N/NO3(-) -N ratio of 75: 25. The content of total alkaloid and guanosine in the tuber were the highest at the NH4(+)-N/NO3(-) -N ratio of 0: 100, and the contents were 0.245% and 0.0197% respectively. With the NH4(+)-N/NO3(-) -N ratio of 50: 50, the content of free total organic acids was the highest, it reached 0.7%, however, the content of free total organic acids was the lowest at the NH4(+) -N/NO3(-) -N ratio of 0: 100.
CONCLUSIONNitrogen fertilization significant influences the nitrogen metabolism, the yield and main chemical composition of P. ternate.
Fertilizers ; analysis ; Nitrates ; analysis ; Nitrogen ; metabolism ; Pinellia ; chemistry ; growth & development ; metabolism ; Quaternary Ammonium Compounds ; analysis
5.Waste water disinfection during SARS epidemic for microbiological and toxicological control.
Chao CHEN ; Xiao-Jian ZHANG ; Yun WANG ; Ling-Xia ZHU ; Jing LIU
Biomedical and Environmental Sciences 2006;19(3):173-178
OBJECTIVETo evaluate the disinfection of wastewater in China.
METHODSDuring the SARS epidemic occurred in Beijing, a study of different disinfection methods used in the main local wastewater plants including means of chlorine, chlorine dioxide, ozone, and ultraviolet was carried out in our laboratory. The residual coliform, bacteria and trihalomethanes, haloacetic acids were determined after disinfection.
RESULTSChlorine had fairly better efficiency on microorganism inactivation than chlorine dioxide with the same dosage. Formation of THMs and HAAs does not exceed the drinking water standard. UV irradiation had good efficiency on microorganism inactivation and good future of application in China. Organic material and ammonia nitrogen was found to be significant on inactivation and DBPs formation.
CONCLUSIONChlorine disinfection seems to be the best available technology for coliform and bacteria inactivation. And it is of fairly low toxicological hazard due to the transformation of monochloramine.
Acetates ; analysis ; metabolism ; Ammonia ; analysis ; metabolism ; Animals ; Bacteria ; drug effects ; isolation & purification ; China ; Chlorine ; pharmacology ; Chlorine Compounds ; pharmacology ; Disinfectants ; pharmacology ; Disinfection ; methods ; Dose-Response Relationship, Drug ; Enterobacteriaceae ; drug effects ; isolation & purification ; Environmental Exposure ; Humans ; Nitrogen ; analysis ; metabolism ; Organic Chemicals ; analysis ; metabolism ; Oxides ; pharmacology ; Ozone ; pharmacology ; SARS Virus ; drug effects ; isolation & purification ; Trihalomethanes ; analysis ; metabolism ; Ultraviolet Rays ; Waste Disposal, Fluid ; methods ; Water Microbiology
6.Favorable Culture Conditions for Mycelial Growth of Korean Wild Strains in Ganoderma lucidum.
Chandana JAYASINGHE ; Ahmed IMTIAJ ; Hyun HUR ; Geon Woo LEE ; Tae Soo LEE ; U Youn LEE
Mycobiology 2008;36(1):28-33
Ganoderma lucidum (Fr.) Karst (Polyporaceae), belonging to basidiomycota, is one of the most famous medicinal mushrooms. This study was carried out to investigate favorable mycelial growth conditions, such as pH, temperature, growth media, carbon sources and nitrogen sources of Korean strains in G. lucidum. The most suitable temperature for the mycelial growth was obtained at 30degrees C. In general, optimal temperature range for the mycelial growth was found at 25~30degrees C. This Mushroom has a broad pH range (5~9) for its mycelial growth and mostly favorable growth was found at pH 5. Generally, Hamada, Glucose peptone, YM, Mushroom complete and Lilly media were the most suitable for the mycelial growth of G. lucidum. Among 10 different carbon sources, dextrin, galactose and fructose were best but the rest of other carbon sources also facilitated the growth of mycelia. The most suitable nitrogen sources were ammonium acetate, glycine, arginine and calcium nitrate, but to a certain extent, all of the supplemented nitrogen sources also stimulated the mycelial growth.
Acetates
;
Agaricales
;
Arginine
;
Basidiomycota
;
Calcium
;
Calcium Compounds
;
Carbon
;
Fructose
;
Galactose
;
Ganoderma
;
Glucose
;
Glycine
;
Hydrogen-Ion Concentration
;
Nitrates
;
Nitrogen
;
Peptones
;
Quaternary Ammonium Compounds
;
Reishi
7.Successful treatment by exchange transfusion of a young infant with sodium nitroprusside poisoning.
Jong Geun BAEK ; Hoar Lim JEONG ; Ji Sook PARK ; Ji Hyun SEO ; Eun Sil PARK ; Jae Young LIM ; Chan Hoo PARK ; Hyang Ok WOO ; Hee Shang YOUN ; Jung Sook YEOM
Korean Journal of Pediatrics 2010;53(8):805-808
Although sodium nitroprusside (SNP) is often used in pediatric intensive care units, cyanide toxicity can occur after SNP treatment. To treat SNP-induced cyanide poisoning, antidotes such as amyl nitrite, sodium nitrite, sodium thiosulfate, and hydroxycobalamin should be administered immediately after diagnosis. Here, we report the first case of a very young infant whose SNP-induced cyanide poisoning was successfully treated by exchange transfusion. The success of this alternative method may be related to the fact that exchange transfusion not only removes the cyanide from the blood but also activates detoxification systems by supplying sulfur-rich plasma. Moreover, exchange transfusion replaces cyanide-contaminated erythrocytes with fresh erythrocytes, thereby improving the blood's oxygen carrying capacity more rapidly than antidote therapy. Therefore, we believe that exchange transfusion might be an effective therapeutic modality for critical cases of cyanide poisoning.
Amyl Nitrite
;
Antidotes
;
Natural Resources
;
Cyanides
;
Erythrocytes
;
Humans
;
Hydroxocobalamin
;
Infant
;
Intensive Care Units, Pediatric
;
Nitroprusside
;
Oxygen
;
Plasma
;
Sodium
;
Sodium Nitrite
;
Thiosulfates
8.Effects of nitrogen form on growth and quality of Chrysanthemums morifolium.
Peng ZHANG ; Kang-cai WANG ; Ming-chao CHENG ; Qing-hai GUO ; Jie ZHAO ; Xiu-Mei ZHAO ; Li LI
China Journal of Chinese Materia Medica 2014;39(17):3263-3268
This paper is aimed to study the effects of nitrogen form on the growth and quality of Chrysanthemums morifolium at the same nitrogen level. In order to provide references for nutrition regulation of Ch. morifolium in field production, pot experiments were carried out in the greenhouse at experimental station of Nanjing Agricultural University. Five proportions of ammonium and nitrate nitrogen were set up and a randomized block design was applied four times repeatedly. The results showed that the growth and quality of Ch. morifolium were significantly influenced by the nitrogen form. The content of chlorophyll and photosynthesis rate were the highest at the NH4(+) -N /NO3(-) -N ratio of 25:75; The activities of NR in different parts of Ch. -morifolium reached the highest at the NH4(+) - N/NO3(-) -N ratio of 0: 100. The contents of nitrate nitrogen in the root and leaves reached the highest at the NH4(+) -N/NO3(-) -N ratio of 50:50. The activities of GS, GOGAT and the content of amylum increased with the ratio of NO3(-) -N decreasing and reached it's maximum at the NH4 + -N/NO3 - -N ratio of 100: 0. The content of ammonium nitrogen were the highest at the NH4 + -N /NO3 --N ratio of 75: 25, while the content of soluble sugar reached the highest at the NH4(+)-N/NO3(-) -N ratio of 25: 75. The content of flavones, chlorogenic acid and 3,5-O-dicoffeoylqunic acid were 57.2 mg x g(-1), 0.673% and 1.838% respectively, reaching the maximum at the NH4(+) -N /NO3(-) -N ratio of 25:75; The content of luteoloside increased with the ratio of NO3(-) -N increasing and reached it's maximum at the NH4(+) -N/NO3(-) -N ratio of 0: 100. The yield of Ch. morifolium reached it's maximum at the NH4(+) -N /NO3(-) -N ratio of 25:75. Nitrogen form has some remarkable influence on the nitrogen metabolism, photosynthesis and growth, Nitrogen form conducive to the growth and quality of Ch. morifolium at the NH4(+) -N /NO3(-) -N ratio of 25: 75.
Ammonium Compounds
;
metabolism
;
pharmacology
;
Chlorophyll
;
metabolism
;
Chrysanthemum
;
drug effects
;
growth & development
;
metabolism
;
Flowers
;
drug effects
;
growth & development
;
metabolism
;
Glutamate Synthase
;
metabolism
;
Glutamate Synthase (NADH)
;
metabolism
;
Glutamate-Ammonia Ligase
;
Nitrates
;
metabolism
;
pharmacology
;
Nitrogen
;
metabolism
;
pharmacology
;
Photosynthesis
;
drug effects
;
Plant Leaves
;
drug effects
;
growth & development
;
metabolism
;
Plant Proteins
;
metabolism
;
Plant Roots
;
drug effects
;
growth & development
;
metabolism
;
Plant Stems
;
drug effects
;
growth & development
;
metabolism
9.Experimental study on the inhibition of biological reduction of Fe(III)EDTA in NO(x) absorption solution.
Wei LI ; Cheng-Zhi WU ; Shi-Han ZHANG ; Yao SHI ; Le-Cheng LEI
Journal of Zhejiang University. Science. B 2005;6(10):1005-1008
Scrubbing of NO(x) from the gas phase with Fe(II)EDTA has been shown to be highly effective. A new biological method can be used to convert NO to N(2) and regenerate the chelating agent Fe(II)EDTA for continuous NO absorption. The core of this biological regeneration is how to effectively simultaneous reduce Fe(III)EDTA and Fe(II)EDTA-NO, two mainly products in the ferrous chelate absorption solution. The biological reduction rate of Fe(III)EDTA plays a main role for the NO(x) removal efficiency. In this paper, a bacterial strain identified as Klebsiella Trevisan sp. was used to demonstrate an inhibition of Fe(III)EDTA reduction in the presence of Fe(II)EDTA-NO. The competitive inhibition experiments indicted that Fe(II)EDTA-NO inhibited not only the growth rate of the iron-reduction bacterial strain but also the Fe(III)EDTA reduction rate. Cell growth rate and Fe(III)EDTA reduction rate decreased with increasing Fe(II)EDTA-NO concentration in the solution.
Adsorption
;
Chelating Agents
;
metabolism
;
Edetic Acid
;
antagonists & inhibitors
;
metabolism
;
Ferric Compounds
;
antagonists & inhibitors
;
metabolism
;
Iron
;
metabolism
;
Klebsiella
;
growth & development
;
metabolism
;
Nitrogen Oxides
;
metabolism
;
Oxidation-Reduction
10.Anaerobic ammonium oxidation for treatment of ammonium-rich wastewaters.
Lei ZHANG ; Ping ZHENG ; Chong-jian TANG ; Ren-cun JIN
Journal of Zhejiang University. Science. B 2008;9(5):416-426
The concept of anaerobic ammonium oxidation (ANAMMOX) is presently of great interest. The functional bacteria belonging to the Planctomycete phylum and their metabolism are investigated by microbiologists. Meanwhile, the ANAMMOX is equally valuable in treatment of ammonium-rich wastewaters. Related processes including partial nitritation-ANAMMOX and completely autotrophic nitrogen removal over nitrite (CANON) have been developed, and lab-scale experiments proved that both processes were quite feasible in engineering with appropriate control. Successful full-scale practice in the Netherlands will accelerate application of the process in future. This review introduces the microbiology and more focuses on application of the ANAMMOX process.
Bacteria, Anaerobic
;
metabolism
;
Bioreactors
;
Nitrites
;
metabolism
;
Nitrogen
;
metabolism
;
Oxidation-Reduction
;
Quaternary Ammonium Compounds
;
metabolism
;
Waste Disposal, Fluid
;
Water Purification
;
methods