1.Effect of berberine on the mRNA expression of nitric oxide synthase (NOS) in rat corpus cavernosum.
Yan, TAN ; Zhangyin, MING ; Qiang, TANG ; Zhaojian, JIANG ; Benrong, HU ; Jizhou, XIANG
Journal of Huazhong University of Science and Technology (Medical Sciences) 2005;25(2):127-30
In order to further investigate the mechanisms of action of berberine (Ber), we assessed the effects of Ber on the mRNA expression of nitric oxide synthases (NOS) in rat corpus cavernosum. After incubation with Ber for 1 or 3 h respectively, the levels of NOS mRNA were examined by reverse transcription polymerase chain reaction (RT-PCR). Our results showed that there were iNOS and eNOS mRNA expressions in rat corpus cavernosum. Ber enhanced eNOS mRNA expression in rat penis, but exhibited no effect on the expression of iNOS mRNA (P > 0.05). The present study indicated that the relaxation of Ber involved the NO-cGMP signal transduction pathway. The enhancing effect of Ber on eNOS mRNA expression might associated with its relaxation of corpus cavernosum.
Berberine/*pharmacology
;
Connective Tissue/physiopathology
;
Nitric Oxide Synthase/*biosynthesis
;
Nitric Oxide Synthase/genetics
;
Nitric Oxide Synthase Type I/biosynthesis
;
Nitric Oxide Synthase Type I/genetics
;
Nitric Oxide Synthase Type III/biosynthesis
;
Nitric Oxide Synthase Type III/genetics
;
Penile Erection/*physiology
;
Penis/*metabolism
;
Penis/physiology
;
RNA, Messenger/biosynthesis
;
RNA, Messenger/genetics
2.Osteopontin protects against hyperoxia-induced lung injury by inhibiting nitric oxide synthases.
Xiang-Feng ZHANG ; Shuang LIU ; Yu-Jie ZHOU ; Guang-Fa ZHU ; Hussein D FODA
Chinese Medical Journal 2010;123(7):929-935
BACKGROUNDExposure of adult mice to more than 95% O(2) produces a lethal injury by 72 hours. Nitric oxide synthase (NOS) is thought to contribute to the pathophysiology of murine hyperoxia-induced acute lung injury (ALI). Osteopontin (OPN) is a phosphorylated glycoprotein produced principally by macrophages. OPN inhibits inducible nitric oxide synthase (iNOS), which generates large amounts of nitric oxide production. However, the relationship between nitric oxide and endogenous OPN in lung tissue during hyperoxia-induced ALI has not yet been elucidated, thus we examined the role that OPN plays in the hyperoxia-induced lung injury and its relationships with NOS.
METHODSOne hundred and forty-four osteopontin knock-out (KO) mice and their matched wild type background control (WT) were exposed in sealed cages > 95% oxygen or room air for 24- 72 hours, and the severity of lung injury was assessed; expression of OPN, endothelial nitric oxide synthase (eNOS) and iNOS mRNA in lung tissues at 24, 48 and 72 hours of hyperoxia were studied by reverse transcription-polymerase chain reaction (RT-PCR); immunohistochemistry (IHC) was performed for the detection of iNOS, eNOS, and OPN protein in lung tissues.
RESULTSOPN KO mice developed more severe acute lung injury at 72 hours of hyperoxia. The wet/dry weight ratio increased to 6.85 +/- 0.66 in the KO mice at 72 hours of hyperoxia as compared to 5.31 +/- 0.92 in the WT group (P < 0.05). iNOS mRNA (48 hours: 1.04 +/- 0.08 vs. 0.63 +/- 0.09, P < 0.01; 72 hours: 0.89 +/- 0.08 vs. 0.72 +/- 0.09, P < 0.05) and eNOS mRNA (48 hours: 0.62 +/- 0.08 vs. 0.43 +/- 0.09, P < 0.05; 72 hours: 0.67 +/- 0.08 vs. 0.45 +/- 0.09, P < 0.05) expression was more significantly increased in OPN KO mice than their matched WT mice when exposed to hyperoxia. IHC study showed higher expression of iNOS (20.54 +/- 3.18 vs. 12.52 +/- 2.46, P < 0.05) and eNOS (19.83 +/- 5.64 vs. 9.45 +/- 3.82, P < 0.05) in lung tissues of OPN KO mice at 72 hours of hyperoxia.
CONCLUSIONOPN can protect against hyperoxia-induced lung injury by inhibiting NOS.
Animals ; Hyperoxia ; genetics ; physiopathology ; Immunohistochemistry ; Lung ; metabolism ; Lung Injury ; etiology ; genetics ; metabolism ; Mice ; Mice, Knockout ; Nitric Oxide Synthase ; genetics ; metabolism ; Nitric Oxide Synthase Type II ; genetics ; Nitric Oxide Synthase Type III ; genetics ; Osteopontin ; genetics ; physiology ; Reverse Transcriptase Polymerase Chain Reaction
3.Effects of insulin-like growth factor II on regulating nitric oxide synthase gene expression in mouse osteoblast-like MC3T3-E1 cells.
Wei-lian SUN ; Li-li CHEN ; Jie YAN ; Zhong-sheng YU
Chinese Journal of Stomatology 2004;39(3):201-204
OBJECTIVETo study the effects of insulin-like growth factor II (IGF-II) on regulating the levels of nitric oxide (NO) and the mRNA transcriptions of inducible nitric oxide synthase (iNOS) and endothelial NOS (eNOS) in mouse osteoblast-like cells.
METHODSMouse osteoblastic cell line MC3T3-E1 was selected as the effective cell of IGF-II. After the cells were treated with IGF-II at different concentrations for different intervals of time, MTT colorimetry was used for examining the cell proliferation. Nitrate reductase method was applied for detecting the NO concentrations in cell culture supernatants and RT-PCR employed for determining the levels of cellular iNOS and eNOS mRNAs.
RESULTSAfter the MC3T3-E1 cells were treated with IGF-II at the dosages of 1 microg/L for 72 h, 10 and 100 microg/L for 24, 48 and 72 h respectively, all the MTT values increased markedly (P < 0.05 or P < 0.01). After the cells were treated for 48 and 72 h at the dosage of 100 microg/L IGF-II respectively, the levels of NO in the supernatants of cell cultures and cellular iNOS mRNA decreased significantly (P < 0.01). However, the levels of eNOS mRNA in the cells treated with any of the IGF-II dosages for the different times were stable (P > 0.05).
CONCLUSIONSIGF-II at the dosages of 1 approximately 100 microg/L showed the effects on promoting proliferation, which as probably due to the maintenance of low NO levels. Inducible NOS gene expression at the level of transcription was down regulated in the MC3T3-E1 cell treated with higher dosage of IGF-II (100 microg/L) but eNOS mRNA was not, which might be one of the mechanisms for the maintenance of low NO levels.
3T3 Cells ; Animals ; Insulin-Like Growth Factor II ; pharmacology ; Mice ; Nitric Oxide ; metabolism ; Nitric Oxide Synthase ; biosynthesis ; genetics ; Nitric Oxide Synthase Type II ; Nitric Oxide Synthase Type III ; Osteoblasts ; cytology ; drug effects ; enzymology ; RNA, Messenger ; biosynthesis
4.Expression of endothelial nitric oxide synthase mRNA in human RBCs during storage.
Xue CHEN ; Chang-Hua ZHOU ; Ying HONG ; Tian-Xiang GONG
Journal of Experimental Hematology 2013;21(2):481-483
This study was purposed to identify endothelial nitric oxide synthase (eNOS) mRNA in human RBCs during storage and to investigate the relationship of its changing profile and preservation time at 4°C. RT-PCR and gene sequencing were applied to identify eNOS-mRNA in banked RBC. Real time PCR was used to study the relationship of eNOS-mRNA expression and preservation time. The results showed that eNOS mRNA was detected in RBC. Compared with fresh RBC, the content of eNOS mRNA in RBC was 0.868 ± 0.119 stored for 1 week, which was 0.379 ± 0.289, 0.108 ± 0.134, 0.141 ± 0.141, 0.125 ± 0.12 stored for 2, 3, 4 and 5 weeks respectively. It is concluded that eNOS mRNA exists in human RBC and its content is decreasing gradually along with the prolongation of storage time in banked RBC. Stored for 3 weeks, the content of eNOS-mRNA remains to be at lower level of concentration in human RBC.
Blood Donors
;
Blood Preservation
;
Erythrocytes
;
metabolism
;
Humans
;
Nitric Oxide Synthase Type III
;
genetics
;
metabolism
;
RNA, Messenger
;
genetics
;
metabolism
5.Effect of transfection of recombinant human endothelial nitric oxide synthase gene on hypertrophic scar fibroblasts in vitro.
Ping YANG ; Ai-li WANG ; De-wu LIU ; Shun XU ; Yao-hui GU ; Jing HUANG ; Bo CHEN ; Qian-cheng LUO ; Qing JIA ; Zhi-hong WU
Chinese Journal of Burns 2008;24(4):275-277
OBJECTIVETo investigate the feasibility of transfection of recombinant human endothelial nitric oxide synthase (eNOS) into human hypertrophic scar fibroblasts (HSFbs), and to observe NO secretion and the synthesis of collagen I and III.
METHODSRecombinant human eNOS with karyocyte expressive vector was constructed in vitro, then was transfected into HSFbs which was isolated from hypertrophic scar tissues and cultured in vitro (T group). The HSFbs untransfected (normal culture) or transfected with empty-vector was used as control group and empty-vector group respectively. The mRNA expression of eNOS, collagen I and III was determined by Realtime PCR. The content of NO was determined by NO assay kit.
RESULTSThe expression of eNOS mRNA in T group was 5.92 +/- 0.21, which was obviously higher than that in empty-vector group (0.98 +/- 0.13, P < 0.05). The expression of collagen I mRNA (0.76 +/- 0.15), and collagen III (0.79 +/- 0.08) in T group was significantly lower than those in empty-vector group (0.98 +/- 0.15, 1.02 +/- 0.12, P < 0.05, respectively). The content of NO in T group (36.1 +/- 0.8 micromol/L) was obviously higher than that in empty-vector group (28.4 +/- 1.0 micromol/L, P < 0.01) and control group (27.7 +/- 1.3 micromol/L, P < 0.01).
CONCLUSIONHSFbs can be the target cells for eNOS gene transfection. The transfected cells can express eNOS and produce NO, which inhibit the synthesis of collagen.
Cicatrix, Hypertrophic ; metabolism ; Collagen Type I ; genetics ; metabolism ; Collagen Type III ; metabolism ; Fibroblasts ; metabolism ; Humans ; In Vitro Techniques ; Nitric Oxide ; metabolism ; Nitric Oxide Synthase Type III ; genetics ; RNA, Messenger ; metabolism ; Transfection
6.Fluid shear stress upregulated endothelial nitric oxide synthase gene expression and nitric oxide formation in human endothelial progenitor cells.
Zhen YANG ; Jun TAO ; Jie-Mei WANG ; Chang TU ; Ming-Guo XU ; Yan WANG ; Long CHEN ; Chu-Fan LUO ; An-Li TANG ; Hong MA
Chinese Journal of Cardiology 2007;35(4):359-362
OBJECTIVETo observe the effect of fluid shear stress on the eNOS gene expression and NO production in endothelial progenitor cells (EPCs).
METHODSThe peripheral blood mononuclear cells from healthy volunteers were inducted into EPCs and divided into stationary group (0 dyn/cm(2), 1 dyn/cm(2) = 0.1 Pa), low-flow shear stress group (5 dyn/cm(2)), medium-flow shear stress group (15 dyn/cm(2)) and high-flow shear stress group (25 dyn/cm(2)). The effects of shear stress on the endothelial nitric oxide synthase (eNOS) gene expression and nitric oxide (NO) production in human EPCs were measured.
RESULTSTypical "spindle-shaped" appearance was shown in EPCs derived from peripheral blood mononuclear cells and were positively labeled by acetylated-LDL, lectin, FLK-1 and vWF. After 4 hours treatment with various shear stresses, the ratio of eNOS/beta-actin mRNA expression by human EPCs in low, medium and high-flow shear stress group was 0.364, 0.505 and 0.548 respectively, which was significantly higher than that in stationary group (0.183, all P < 0.05) and the NO secretion in human EPCs in low, medium and high-flow shear stress group was also significantly higher than that in stationary group (all P < 0.05).
CONCLUSIONFluid shear stress enhances the eNOS mRNA expression and NO secretion in human EPCs, therefore, shear stress could potentiate the repair efficacy of EPCs for endothelial injury.
Cell Differentiation ; Cells, Cultured ; Endothelial Cells ; cytology ; metabolism ; secretion ; Humans ; Nitric Oxide ; metabolism ; Nitric Oxide Synthase Type III ; genetics ; metabolism ; Stem Cells ; cytology ; metabolism ; secretion ; Stress, Mechanical
7.Research Progress of NOS3 Participation in Regulatory Mechanisms of Cardiovascular Diseases.
Ting SUN ; Qingjia CHI ; Guixue WANG
Journal of Biomedical Engineering 2016;33(1):188-192
Cardiovascular disease has been a major threat to human's health and lives for many years. It is of great importance to explore the mechanisms and develop strategies to prevent the pathogenesis. Generally, cardiovascular disease is associated with endothelial dysfunction, which is closely related to the nitric oxide (NO)-mediated vasodilatation. The release of NO is regulated by NOS3 gene in mammals' vascular system. A great deal of evidences have shown that the polymorphism and epigenetic of NOS3 gene play vital roles in the pathological process of cardiovascular disease. To gain insights into the role of NOS3 in the cardiovascular diseases, we reviewed the molecular mechanisms underlying the development of cardiovascular diseases in this paper, including the uncoupling of NOS3 protein, epigenetic and polymorphism of NOS3 gene. The review can also offer possible strategies to prevent and treat cardiovascular diseases.
Animals
;
Cardiovascular Diseases
;
metabolism
;
pathology
;
Epigenesis, Genetic
;
Humans
;
Nitric Oxide
;
metabolism
;
Nitric Oxide Synthase Type III
;
genetics
;
metabolism
;
Polymorphism, Genetic
;
Vasodilation
8.Effect of dexamethasone on nitric oxide synthase and Caspase-3 gene expressions in endotoxemia in neonate rat brain.
Hua WANG ; Yu-Bin WU ; Xiu-Hua DU
Biomedical and Environmental Sciences 2005;18(3):181-186
OBJECTIVETo investigate the gene and protein expressions of three isoforms of nitric oxide synthase (NOS) and gene expression of Caspase-3, and effect of dexamethasone on them in neonatal rats with lipopolysaccharide (LPS)-induced endotoxemic brain damage.
METHODSExpressions of the three isoforms of NOS and caspase-3 mRNA in the brain were investigated by RT-PCR in postnatal 7-day Wistar rats with acute endotoxemia by intraperitoneal administration of LPS. Regional distributions of NOSs were examined by immunohistochemical technique.
RESULTSnNOS and Caspase-3 mRNA were obviously detected. eNOS mRNA was faintly expressed, but iNOS mRNA was undetectable in the control rat brain. The expressions of NOS mRNA of three isoforms were weak 2 h after LPS (5 mg/mg) delivery, peaked at 6 h, and thereafter, reduced gradually up to 24 h. The expression intensity was in the order of nNOS> iNOS> eNOS. Widespread nNOS, scattered eNOS distribution and negative iNOS were identified in the control rat brain and all isoforms of NOS could be induced by LPS which reached the apex at 24 h in the order of nNOS> iNOS> eNOS as detected by immunostaining. Although Caspase-3 mRNA could be found in all groups, DNA fragmentation was only seen at 6 h and 24 h. The expressions of NOS and Caspase-3 mRNA were inhibited in the rat brain when dexamethasone was administrated.
CONCLUSIONLPS-induced NO production induces apoptosis of neurons through mechanism involving the Caspase-3 activation, which may play an important role in the pathogenesis of brain damage during endotoxemia, and neuro-protective effects of dexamethasone may be partially realized by inhibiting the expression of NOS mRNA.
Animals ; Animals, Newborn ; Apoptosis ; Brain ; drug effects ; enzymology ; Caspase 3 ; Caspases ; genetics ; metabolism ; Dexamethasone ; pharmacology ; Disease Models, Animal ; Endotoxemia ; chemically induced ; enzymology ; Female ; Lipopolysaccharides ; Male ; Nerve Tissue Proteins ; genetics ; metabolism ; Nitric Oxide Synthase ; genetics ; metabolism ; Nitric Oxide Synthase Type I ; Nitric Oxide Synthase Type II ; Nitric Oxide Synthase Type III ; RNA, Messenger ; metabolism ; Rats ; Rats, Wistar ; Reverse Transcriptase Polymerase Chain Reaction
9.Endogenous nitric oxide pathway in high pulmonary blood flow-induced pulmonary vascular structural remodeling.
Jian-guang QI ; Jun-bao DU ; Xiu-ying TANG ; Jian LI ; Bing WEI ; Chao-shu TANG
Chinese Journal of Pediatrics 2003;41(3):215-218
OBJECTIVEPulmonary vascular structural remodeling induced by high pulmonary blood flow is an important pathologic basis of pulmonary hypertension with congenital heart disease of left-to-right shunt. However, the mechanism is still not clear. The present study aimed to examine the alteration of endogenous nitric oxide (NO) pathway in high pulmonary blood flow-induced pulmonary vascular structural remodeling, so as to explore the role of NO pathway in pulmonary hypertension induced by high pulmonary blood flow.
METHODSSixteen male SD rats were randomly divided into control group (n = 8) and shunting group (n = 8). Aortocaval shunting was produced for 11 weeks in shunt rats. Pulmonary artery mean pressure (mPAP) of each rat was evaluated using right cardiac catheterization. The ratio of right ventricular mass to left ventricular plus septal mass [RV/(LV + S)] was detected. Pulmonary vascular micro-and ultra-structure was examined by using a light microscope and a transmitted electronic microscope. Meanwhile, the concentration of plasma NO was measured by spectrophotometry. The expressions of endothelial NO synthase (eNOS) mRNA and protein by pulmonary arteries were detected by in situ hybridization and immunohistochemistry, respectively.
RESULTSAfter 11-week aortocaval shunting, mPAP was significantly increased [(22.5 +/- 2.6) mmHg vs. (15.8 +/- 2.8) mmHg, 1 mmHg = 0.133 kPa, t = 4.97, P < 0.01], and RV/(LV + S) was also markedly increased (0.267 +/- 0.022 vs. 0.221 +/- 0.016, t = 4.85, P < 0.01). The percentage of muscularized arteries was obviously increased in shunt rats compared with controls [(23.2 +/- 2.4)% vs. (13.5 +/- 2.1)%, t = 7.82, P < 0.01], and relative medial thickness of pulmonary arteries was obviously increased in shunt rats [median pulmonary artery: (7.76 +/- 0.56)% vs. (4.82 +/- 1.03)%, t = 6.23, P < 0.01; small pulmonary artery: (11.94 +/- 0.66)% vs. (6.91 +/- 0.53)%, t = 14.96, P < 0.01]. Ultrastructural changes, such as hyperplasia and degeneration of endothelial cells, irregularity of internal elastic laminar and hypertrophy and the increased number of synthetic phenotype of smooth muscle cells, were found in intrapulmonary arteries of shunt rats. Meanwhile, plasma NO concentration was increased [(30.2 +/- 7.9) micromol/L vs (19.7 +/- 5.7) micromol/L, t = 3.05, P < 0.01) and eNOS mRNA and protein expressions by pulmonary arteries were significantly augmented in rats of shunting group.
CONCLUSIONThe upregulation of eNOS/NO might be an adaptive response of pulmonary circulation to an increased blood flow in the development of pulmonary hypertension and pulmonary vascular structural remodeling.
Animals ; Blood Flow Velocity ; Hypertension, Pulmonary ; physiopathology ; Immunohistochemistry ; In Situ Hybridization ; Male ; Nitric Oxide ; blood ; Nitric Oxide Synthase ; blood ; genetics ; Nitric Oxide Synthase Type III ; Pulmonary Artery ; physiopathology ; RNA, Messenger ; genetics ; metabolism ; Rats ; Rats, Sprague-Dawley
10.Nitric oxide synthase gene expression in injured spinal cord tissue.
Chenglong LIU ; Anmin JIN ; Chusong ZHOU ; Bin CHEN
Chinese Medical Journal 2002;115(5):740-742
OBJECTIVETo investigate gene expression of three nitric oxide synthase isozymes in injured spinal cord tissue.
METHODSThirty-six adult SD rats were randomly divided into six groups: a normal group and five injury groups, with six per each group. Animals in the injury groups were sacrificed at 2, 6, 12, 24, 48 h after injury. A compression injury model on the spinal cord was made according to Nystrom B et al and gene expression of the three NOS isozymes were examined by reverse transcription polymerase chain reaction (RT-PCR).
RESULTSGene expression of nNOS and eNOS were detectable in the normal group and were up-regulated quickly after injury, reaching a maximum at 6 h: (0.633 +/- 0.012) and (1.236 +/- 0.207). Gene expression of iNOS was detectable only in the injury groups and it was gradually up-regulated after injury, reaching a maximum at 24 h: (1.043 +/- 0.049).
CONCLUSIONInjury to the spinal cord leads to early up-regulation of cNOS and late up-regulation of iNOS. Different NOS isozymes may play different roles in secondary spinal cord injury.
Animals ; Female ; Gene Expression Regulation, Enzymologic ; Male ; Nitric Oxide Synthase ; genetics ; Nitric Oxide Synthase Type I ; Nitric Oxide Synthase Type II ; Nitric Oxide Synthase Type III ; RNA ; genetics ; metabolism ; Rats ; Rats, Sprague-Dawley ; Reverse Transcriptase Polymerase Chain Reaction ; Spinal Cord ; enzymology ; pathology ; Spinal Cord Injuries ; enzymology ; genetics