1.Frequency of FCGR3B Alleles in Thai Blood Donors.
Chollanot KASET ; Nipapan LEETRAKOOL ; Kamphon INTHARANUT ; Oytip NATHALANG
Annals of Laboratory Medicine 2013;33(6):426-430
BACKGROUND: Human neutrophil antigens (HNAs) are involved in autoimmune and alloimmune neutropenia and transfusion-related acute lung injury. The HNA-1 system is important in immunogenetics, and allele frequencies have been described in different populations. This study investigated the frequency of FCGR3B alleles encoding HNA-1a, HNA-1b, and HNA-1c among Thai blood donors and compared these frequencies with those previously reported for other populations. METHODS: Eight hundred DNA samples obtained from unrelated healthy blood donors at the National Blood Centre, Thai Red Cross Society, Bangkok, and the Blood Bank, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand, were included. Samples were simultaneously typed for each FCGR3B allele using an in-house polymerase chain reaction with sequence-specific primer (PCR-SSP) technique. RESULTS: The frequencies of FCGR3B*1, FCGR3B*2, and FCGR3B*3 alleles in central Thai blood donors were 0.548, 0.452, and 0.004, respectively; only FCGR3B*1 and FCGR3B*2 alleles were found in northern Thai blood donors (0.68 and 0.32, respectively). Compared with other Asian populations, central Thais had higher frequencies of the FCGR3B*2 allele (P<0.001), while the frequencies of the FCGR3B*1 and FCGR3B*2 alleles in northern Thais were similar to those previously reported in Taiwanese and Japanese populations. In contrast, the frequencies of the FCGR3B*1 and FCGR3B*2 alleles in the northern Thai population were statistically different from those observed in central Thai, Korean, German, and Turkish populations. CONCLUSIONS: FCGR3B allele frequencies were significantly different between central and northern Thai blood donors. Our in-house PCR-SSP method is a simple, cost-effective, and convenient method for FCGR3B allele detection.
Asian Continental Ancestry Group/*genetics
;
*Blood Donors
;
DNA/analysis
;
DNA Primers/chemistry/metabolism
;
GPI-Linked Proteins/genetics
;
Gene Frequency
;
Genotype
;
Humans
;
Polymerase Chain Reaction
;
Receptors, IgG/*genetics
;
Thailand
2.Impact of using genotyping to predict SERF negative phenotype in Thai blood donor populations
Oytip NATHALANG ; Kamphon INTHARANUT ; Nipapan LEETRAKOOL ; Supattra MITUNDEE ; Pawinee KUPATAWINTU
Blood Research 2020;55(2):107-111
Background:
SERF(+) is a high prevalence antigen in the Cromer blood group system that is encoded by a CROM*01.12 allele. The SERF(-) on red cells is caused by a single nucleotide variation, c.647C>T, in exon 5 of the Decay-accelerating factor, DAF gene. Alloanti-SERF was found in a pregnant Thai woman, and a SERF(-) individual was found among Thai blood donors. Since anti-SERF is commercially unavailable, this study aimed to develop appropriate genotyping methods for CROM*01.12 and CROM*01.-12 alleles and predict the SERF(-) phenotype in Thai blood donors.
Methods:
DNA samples obtained from 1,580 central, 300 northern, and 427 southern Thai blood donors were genotyped for CROM*01.12 and CROM*01.-12 allele detection using in-house PCR with sequence-specific primer (PCR-SSP) confirmed by DNA sequencing.
Results:
Validity of the PCR-SSP genotyping results agreed with DNA sequencing; CROM*01.12/ CROM*01.12 was the most common (98.42%, 98.00%, and 98.59%), followed by CROM*01.12/CROM*01.-12 (1.58%, 2.00%, and 1.41%) among central, northern, and southern Thais, respectively. CROM*01.-12/CROM*01.-12 was not detected in all three populations. The alleles found in central Thais did not significantly differ from those found in northern and southern Thais.
Conclusion
This study is the first to distinguish the predicted SERF phenotypes from genotyping results obtained using in-house PCR-SSP, confirming that the CROM*01.-12 allele frequency ranged from 0.007 to 0.010 in three Thai populations. This helps identify the SERF(-) phenotype among donors and patients, ultimately preventing adverse transfusion reactions.