1.Nilotinib-loaded gelatin methacryloyl microneedles patch for the treatment of cardiac dysfunction after myocardial infarction.
Journal of Biomedical Engineering 2023;40(5):996-1004
The study aimed to evaluate the therapeutic effect of nilotinib-loaded biocompatible gelatin methacryloyl (GelMA) microneedles patch on cardiac dysfunction after myocardial infarction(MI), and provide a new clinical perspective of myocardial fibrosis therapies. The GelMA microneedles patches were attached to the epicardial surface of the infarct and peri-infarct zone in order to deliver the anti-fibrosis drug nilotinib on the 10th day after MI, when the scar had matured. Cardiac function and left ventricular remodeling were assessed by such as echocardiography, BNP (brain natriuretic peptide) and the heart weight/body weight ratio (HW/BW). Myocardial hypertrophy and fibrosis were examined by WGA (wheat germ agglutinin) staining, HE (hematoxylin-eosin staining) staining and Sirius Red staining. The results showed that the nilotinib-loaded microneedles patch could effectively attenuate fibrosis expansion in the peri-infarct zone and myocardial hypertrophy, prevent adverse ventricular remodeling and finally improve cardiac function. This treatment strategy is a beneficial attempt to correct the cardiac dysfunction after myocardial infarction, which is expected to become a new strategy to correct the cardiac dysfunction after MI. This is of great clinical significance for improving the long-term prognosis of MI patients.
Humans
;
Myocardial Infarction/drug therapy*
;
Cardiomegaly
;
Natriuretic Peptide, Brain/therapeutic use*
;
Fibrosis
;
Myocardium/pathology*
2.High-quality Arabidopsis thaliana Genome Assembly with Nanopore and HiFi Long Reads
Wang BO ; Yang XIAOFEI ; Jia YANYAN ; Xu YU ; Jia PENG ; Dang NINGXIN ; Wang SONGBO ; Xu TUN ; Zhao XIXI ; Gao SHENGHAN ; Dong QUANBIN ; Ye KAI
Genomics, Proteomics & Bioinformatics 2022;20(1):4-13
Arabidopsis thaliana is an important and long-established model species for plant molec-ular biology,genetics,epigenetics,and genomics.However,the latest version of reference genome still contains a significant number of missing segments.Here,we reported a high-quality and almost complete Col-0 genome assembly with two gaps(named Col-XJTU)by combining the Oxford Nanopore Technologies ultra-long reads,Pacific Biosciences high-fidelity long reads,and Hi-C data.The total genome assembly size is 133,725,193 bp,introducing 14.6 Mb of novel sequences compared to the TAIR1 0.1 reference genome.All five chromosomes of the Col-XJTU assembly are highly accurate with consensus quality(QV)scores>60(ranging from 62 to 68),which are higher than those of the TAIR10.1 reference(ranging from 45 to 52).We completely resolved chro-mosome(Chr)3 and Chr5 in a telomere-to-telomere manner.Chr4 was completely resolved except the nucleolar organizing regions,which comprise long repetitive DNA fragments.The Chr1 cen-tromere(CEN1),reportedly around 9 Mb in length,is particularly challenging to assemble due to the presence of tens of thousands of CEN180 satellite repeats.Using the cutting-edge sequencing data and novel computational approaches,we assembled a 3.8-Mb-long CEN1 and a 3.5-Mb-long CEN2.We also investigated the structure and epigenetics of centromeres.Four clusters of CEN180 monomers were detected,and the centromere-specific histone H3-like protein(CENH3)exhibited a strong preference for CEN 180 Cluster 3.Moreover,we observed hypomethylation patterns in CENH3-enriched regions.We believe that this high-quality genome assembly,Col-XJTU,would serve as a valuable reference to better understand the global pattern of centromeric polymorphisms,as well as the genetic and epigenetic features in plants.