1.Jianpi Xiaoai Prescription Ameliorates Chemotherapy Resistance in Colon Cancer by Targeting FGF2 to Inhibit PI3K/Akt Signaling Pathway
Xiaolan JIAN ; Kangwen NING ; Jiaxiang YANG ; Shenglan KOU ; Wanting KUANG ; Ziqi WANG ; Yuqin TAN ; Puhua ZENG ; Lingjuan TAN ; Wei PENG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):120-130
ObjectiveTo explore the effect and mechanism of Jianpi Xiaoai prescription (JPXA) in ameliorating the 5-fluorouracil (5-FU) resistance of colon cancer. MethodsA HCT116/5-FU resistant cell line was established. Different concentrations (10%, 15%, 20%) of JPXA-containing serum and drug-free serum were used for intervention, and 10% fetal bovine serum (10% FBS), fibroblast growth factor receptor (FGFR) inhibitor (AZD4547), and recombinant fibroblast growth factor 2 (FGF2) were set as the control groups. Sensitive HCT116 cells were used in the FGF2 group, while HCT116/5-FU cells were used in other groups. Drug resistance, the level of FGF2 in the cell culture medium, the mRNA level of FGF2 in cells, and the protein levels of FGF2/FGFR and phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) were determined. The drug-resistant cells were transplanted into the axilla of nude mice to establish a tumor model. The modeled mice were allocated into model, JPXA (15 g·kg-1), 5-FU (0.02 g·kg-1), JPXA+5-FU (15 g·kg-1+0.02 g·kg-1), AZD4547 (0.012 5 g·kg-1), and AZD4547+5-FU (0.012 5 g·kg-1+0.02 g·kg-1) groups. The tumor growth and the protein levels of FGF/FGFR and PI3K/Akt in each group were observed. ResultsThe survival rate of HCT116/5-FU cells decreased in all the JPXA groups with different concentrations. The cell survival rate was decreased most obviously in the 20% JPXA group. The level of FGF2 in the cell culture medium and the mRNA level of FGF2 in cells of each JXPA group decreased, and the decrease was the most significant in the 20% group (P<0.01). HCT116/5-FU cells showed up-regulated protein levels of FGF2 and phosphorylated fibroblast growth factor receptor 1 (p-FGFR1), but down-regulated protein level of FGFR1 (P<0.01). JPXA down-regulated the expression of FGF2 and p-FGFR1 and up-regulated the expression of FGFR1 (P<0.05). In addition, JPXA down-regulated the expression levels of phosphorylated protein kinase B (p-Akt) and phosphorylated mammalian target of rapamycin (p-mTOR), while up-regulating the expression levels of Akt and Bcl-2-asociated death promoter (Bad) (P<0.05). Animal experiments showed that the JPXA combined with 5-FU significantly inhibited the growth of drug-resistant tumors, reduced the protein levels of FGF2, p-FGFR1, phosphorylated phosphatidylinositol-3-kinase (p-PI3K), p-Akt, and p-mTOR, and increased the expression of Bad. It indicated that JPXA can inhibit the FGF2/FGFR1 signaling in colon cancer and regulate PI3K/Akt and downstream signaling pathways. ConclusionJPXA can ameliorate the chemotherapy resistance of colon cancer through down-regulating FGF2 expression and inhibiting the activation of the PI3K/Akt signaling pathway.
2.Targeting TM4SF1 promotes tumor senescence enhancing CD8+ T cell cytotoxic function in hepatocellular carcinoma
Weifeng ZENG ; Furong LIU ; Yachong LIU ; Ze ZHANG ; Haofan HU ; Shangwu NING ; Hongwei ZHANG ; Xiaoping CHEN ; Zhibin LIAO ; Zhanguo ZHANG
Clinical and Molecular Hepatology 2025;31(2):489-508
Background/Aims:
Transmembrane 4 L six family member 1 (TM4SF1) is highly expressed and contributes to the progression of various malignancies. However, how it modulates hepatocellular carcinoma (HCC) progression and senescence remains to be elucidated.
Methods:
TM4SF1 expression in HCC samples was evaluated using immunohistochemistry and flow cytometry. Cellular senescence was assessed through SA-β-gal activity assays and Western blot analysis. TM4SF1-related protein interactions were investigated using immunoprecipitation-mass spectrometry, co-immunoprecipitation, bimolecular fluorescence complementation, and immunofluorescence. Tumor-infiltrating immune cells were analyzed by flow cytometry. The HCC mouse model was established via hydrodynamic tail vein injection.
Results:
TM4SF1 was highly expressed in human HCC samples and murine models. Knockdown of TM4SF1 suppressed HCC proliferation both in vitro and in vivo, inducing non-secretory senescence through upregulation of p16 and p21. TM4SF1 enhanced the interaction between AKT1 and PDPK1, thereby promoting AKT phosphorylation, which subsequently downregulated p16 and p21. Meanwhile, TM4SF1-mediated AKT phosphorylation enhanced PD-L1 expression while reducing major histocompatibility complex class I level on tumor cells, leading to impaired cytotoxic function of CD8+ T cells and an increased proportion of exhausted CD8+ T cells. In clinical HCC samples, elevated TM4SF1 expression was associated with resistance to anti-PD-1 immunotherapy. Targeting TM4SF1 via adeno-associated virus induced tumor senescence, reduced tumor burden and synergistically enhanced the efficacy of anti-PD-1 therapy.
Conclusions
Our results revealed that TM4SF1 regulated tumor cell senescence and immune evasion through the AKT pathway, highlighting its potential as a therapeutic target in HCC, particularly in combination with first-line immunotherapy.
3.Targeting TM4SF1 promotes tumor senescence enhancing CD8+ T cell cytotoxic function in hepatocellular carcinoma
Weifeng ZENG ; Furong LIU ; Yachong LIU ; Ze ZHANG ; Haofan HU ; Shangwu NING ; Hongwei ZHANG ; Xiaoping CHEN ; Zhibin LIAO ; Zhanguo ZHANG
Clinical and Molecular Hepatology 2025;31(2):489-508
Background/Aims:
Transmembrane 4 L six family member 1 (TM4SF1) is highly expressed and contributes to the progression of various malignancies. However, how it modulates hepatocellular carcinoma (HCC) progression and senescence remains to be elucidated.
Methods:
TM4SF1 expression in HCC samples was evaluated using immunohistochemistry and flow cytometry. Cellular senescence was assessed through SA-β-gal activity assays and Western blot analysis. TM4SF1-related protein interactions were investigated using immunoprecipitation-mass spectrometry, co-immunoprecipitation, bimolecular fluorescence complementation, and immunofluorescence. Tumor-infiltrating immune cells were analyzed by flow cytometry. The HCC mouse model was established via hydrodynamic tail vein injection.
Results:
TM4SF1 was highly expressed in human HCC samples and murine models. Knockdown of TM4SF1 suppressed HCC proliferation both in vitro and in vivo, inducing non-secretory senescence through upregulation of p16 and p21. TM4SF1 enhanced the interaction between AKT1 and PDPK1, thereby promoting AKT phosphorylation, which subsequently downregulated p16 and p21. Meanwhile, TM4SF1-mediated AKT phosphorylation enhanced PD-L1 expression while reducing major histocompatibility complex class I level on tumor cells, leading to impaired cytotoxic function of CD8+ T cells and an increased proportion of exhausted CD8+ T cells. In clinical HCC samples, elevated TM4SF1 expression was associated with resistance to anti-PD-1 immunotherapy. Targeting TM4SF1 via adeno-associated virus induced tumor senescence, reduced tumor burden and synergistically enhanced the efficacy of anti-PD-1 therapy.
Conclusions
Our results revealed that TM4SF1 regulated tumor cell senescence and immune evasion through the AKT pathway, highlighting its potential as a therapeutic target in HCC, particularly in combination with first-line immunotherapy.
4.Targeting TM4SF1 promotes tumor senescence enhancing CD8+ T cell cytotoxic function in hepatocellular carcinoma
Weifeng ZENG ; Furong LIU ; Yachong LIU ; Ze ZHANG ; Haofan HU ; Shangwu NING ; Hongwei ZHANG ; Xiaoping CHEN ; Zhibin LIAO ; Zhanguo ZHANG
Clinical and Molecular Hepatology 2025;31(2):489-508
Background/Aims:
Transmembrane 4 L six family member 1 (TM4SF1) is highly expressed and contributes to the progression of various malignancies. However, how it modulates hepatocellular carcinoma (HCC) progression and senescence remains to be elucidated.
Methods:
TM4SF1 expression in HCC samples was evaluated using immunohistochemistry and flow cytometry. Cellular senescence was assessed through SA-β-gal activity assays and Western blot analysis. TM4SF1-related protein interactions were investigated using immunoprecipitation-mass spectrometry, co-immunoprecipitation, bimolecular fluorescence complementation, and immunofluorescence. Tumor-infiltrating immune cells were analyzed by flow cytometry. The HCC mouse model was established via hydrodynamic tail vein injection.
Results:
TM4SF1 was highly expressed in human HCC samples and murine models. Knockdown of TM4SF1 suppressed HCC proliferation both in vitro and in vivo, inducing non-secretory senescence through upregulation of p16 and p21. TM4SF1 enhanced the interaction between AKT1 and PDPK1, thereby promoting AKT phosphorylation, which subsequently downregulated p16 and p21. Meanwhile, TM4SF1-mediated AKT phosphorylation enhanced PD-L1 expression while reducing major histocompatibility complex class I level on tumor cells, leading to impaired cytotoxic function of CD8+ T cells and an increased proportion of exhausted CD8+ T cells. In clinical HCC samples, elevated TM4SF1 expression was associated with resistance to anti-PD-1 immunotherapy. Targeting TM4SF1 via adeno-associated virus induced tumor senescence, reduced tumor burden and synergistically enhanced the efficacy of anti-PD-1 therapy.
Conclusions
Our results revealed that TM4SF1 regulated tumor cell senescence and immune evasion through the AKT pathway, highlighting its potential as a therapeutic target in HCC, particularly in combination with first-line immunotherapy.
5.Selection and validation of reference genes for quantitative real-time PCR analysis in Tujia medicine Xuetong.
Qian XIAO ; Chen-Si TAN ; Jiang ZENG ; Yuan-Shu XU ; Tian-Hao FU ; Lu-Yun NING ; Wei WANG
China Journal of Chinese Materia Medica 2025;50(3):682-692
Tujia ethnic group medicine Xuetong is derived from Kadsura heteroclita, the stem of which has the medicinal value for anti-rheumatoid arthritis, liver protection, anti-tumor, anti-oxidation effects, and has been widely used in Hunan and Guangdong in China. The selection of reliable and stable reference genes is the basis for subsequent molecular research on K. heteroclita. In this study, GAPDH, TUA, Actin, UBQ, EF-1α, 18S-rRNA, CYP, UBC, TUB, H2A, and RPL were selected as candidate reference genes in Kadsura heteroclita. The gene expression levels of the 11 candidate reference genes of K. heteroclita in its 6 different parts(stem-inside of the cambium, stem-outside of the cambium, fruit, flower, root, and leaf) and under different intervention conditions [drought stress, salt stress, and methyl jasmonate(MeJA) treatment] were detected by quantitative real-time polymerase chain reaction(qRT-PCR). The expression stability of the 11 candidate reference genes was comprehensively analyzed and evaluated by geNorm, NormFinder, ΔCT algorithm, and RefFinder software. The results showed that the expression of UBC and RPL was relatively stable in 6 different parts, and UBC and GAPDH genes were relatively stable under different intervention conditions. To verify the reliability of reference genes for K. heteroclita, this study further examined the relative expression levels of KhFPS, KhIDI, KhCAS, KhSQE, KhSQS, KhSQS-2, KhHMGS, KhHMGR, KhMVD, KhMVK, KhDXR, KhDXS, KhPMVK, and KhGGPS in different parts and under different intervention conditions, which might relate to the synthesis of the main component(Xuetongsu) of K. heteroclita. The results showed that with UBC and RPL or UBC and GAPDH as the reference genes, the expression trends of these 14 genes were basically consistent in different parts or under different intervention conditions for K. heteroclita. In conclusion, UBC can be used as a reference gene of K. heteroclita for its different parts and different intervention conditions, which lays a foundation for further research on the biosynthetic pathway of main components in K. heteroclita.
Real-Time Polymerase Chain Reaction/methods*
;
Reference Standards
;
Gene Expression Regulation, Plant
;
Gene Expression Profiling
;
Plant Proteins/metabolism*
;
Drugs, Chinese Herbal
6.Immune function regulation and tumor-suppressive effects of Shenqi Erpi Granules on S_(180) tumor-bearing mice.
Xiong-Wei ZHANG ; Yan-Ning JIANG ; Hu QI ; Bin LI ; Yuan-Lin GAO ; Ze-Yang ZHANG ; Jian-An FENG ; Xi LI ; Nan ZENG
China Journal of Chinese Materia Medica 2025;50(13):3753-3764
This study aims to establish the S_(180) tumor-bearing mice model, and to investigate the influence of Shenqi Erpi Granules(SQEPG) on immune function, as well as the drug's tumor-suppressive effect and mechanism. SPF grade KM mice(half male and half female) were randomly divided into 6 groups: a control group, a model group, a cyclophosphamide group(50 mg·kg~(-1)), as well as SQEPG groups in low-, medium-, and high-dose(5.25, 10.5, 21 g·kg~(-1)). The control group and the model group were given distilled water, and the other 4 groups were given the corresponding drugs by gavage. The administration continued for 10 days before the mice were sacrificed. The antitumor and immune regulation effects of SQEPG were evaluated. The effect of SQEPG on delayed type hypersensitivity reaction(DTH), carbon clearance index, and serum hemolysin antibody level was observed to reflect the effect on the immune function of tumor-bearing mice. Tumor weight was recorded to calculate the tumor suppression rate and the immune organ index. Hematoxylin-eosin(HE) staining was used to detect morphological changes in tumor tissues. Flow cytometry was employed to detect the percentage of CD4~+ and CD8~+ T-cells in the spleen tissues and the tumor tissue apoptosis levels. Immunohistochemistry was conducted to detect the KI67 protein expression level of tumor tissues. ELISA resorted to the detection of the following expression levels in tumor tissues: tumor necrosis factor-α(TNF-α), interleukin-2(IL-2), interferon-γ(IFN-γ). Western blot was performed to detect the expression levels of caspase-3, B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), cyclin-dependent kinases 4(CDK4), G_1/S-specific cyclin D1(cyclin D1), and vascular endothelial growth factor A(VEGFA). The results showed that, compared with the model group, the SQEPG could increase the swelling of the auricle of the tumor-bearing mice; significantly increase the phagocytic index of carbon granule contour(P<0.05 or P<0.01), and the middle dose of SQEPG could significantly increase the antibody level of hemolysin(P<0.05); different doses of SQEPG significantly inhibit the growth of the tumor, and decrease the mass of the tumor tissues(P<0.05 or P<0.01); the low dose of SQEPG significantly decreased spleen index(P<0.05), low and high doses of SQEPG increased thymus index, while medium doses of SQEPG decreased thymus index. High doses of SQEPG significantly elevated the levels of CD4~+ and CD8~+ T-cells in the spleens of the homozygous mice(P<0.01 or P<0.001), and increased the apoptosis rate of the cells of the tumor tissues(P<0.05); Meanwhile, high-dose SQEPG elevated the levels of immunity factors such as IL-2, IFN-γ and TNF-α in the serum of tumor-bearing mice(P<0.01); medium-and high-dose SQEPG significantly lowered the rate of positive expression of KI67 protein in tumor tissues(P<0.01). Compared with the model group, high-dose SQEPG significantly up-regulated the expression of caspase-3 and Bax proteins in tumor tissues(P<0.05), and significantly down-regulated the expression of CDK4, cyclin D1, and VEGFA proteins(P<0.05 or P<0.01). In conclusion, SQEPG has the effect of improving immune function and inhibiting tumor growth in tumor-bearing mice. Its mechanism of tumor-suppressive effects may be related to apoptosis promotion, cell cycle progression block, and tumor cell proliferation inhibition.
Animals
;
Mice
;
Drugs, Chinese Herbal/pharmacology*
;
Male
;
Female
;
Apoptosis/drug effects*
;
Sarcoma 180/genetics*
;
Humans
7.Research progress and exploration of traditional Chinese medicine in treatment of sepsis-acute lung injury by inhibiting pyroptosis.
Wen-Yu WU ; Nuo-Ran LI ; Kai WANG ; Xin JIAO ; Wan-Ning LAN ; Yun-Sheng XU ; Lin WANG ; Jing-Nan LIN ; Rui CHEN ; Rui-Feng ZENG ; Jun LI
China Journal of Chinese Materia Medica 2025;50(16):4425-4436
Sepsis is a systemic inflammatory response caused by severe infection or trauma, and is one of the common causes of acute lung injury(ALI) and acute respiratory distress syndrome(ARDS). Sepsis-acute lung injury(SALI) is a critical clinical condition with high morbidity and mortality. Its pathogenesis is complex and not yet fully understood, and there is currently a lack of targeted and effective treatment options. Pyroptosis, a novel form of programmed cell death, plays a key role in the pathological process of SALI by activating inflammasomes and releasing inflammatory factors, making it a potential therapeutic target. In recent years, the role of traditional Chinese medicine(TCM) in regulating signaling pathways related to pyroptosis through multi-components and multi-targets has attracted increasing attention. TCM may intervene in pyroptosis by inhibiting the activation of NLRP3 inflammasomes and regulating the expression of Caspase family proteins, thus alleviating inflammatory damage in lung tissues. This paper systematically reviews the molecular regulatory network of pyroptosis in SALI and explores the potential mechanisms and research progress on TCM intervention in cellular pyroptosis. The aim is to provide new ideas and theoretical support for basic research and clinical treatment strategies of TCM in SALI.
Pyroptosis/drug effects*
;
Humans
;
Sepsis/genetics*
;
Acute Lung Injury/physiopathology*
;
Animals
;
Drugs, Chinese Herbal/therapeutic use*
;
Medicine, Chinese Traditional
;
Inflammasomes/metabolism*
;
NLR Family, Pyrin Domain-Containing 3 Protein/genetics*
8.Rutaecarpine Attenuates Monosodium Urate Crystal-Induced Gouty Inflammation via Inhibition of TNFR-MAPK/NF-κB and NLRP3 Inflammasome Signaling Pathways.
Min LI ; Zhu-Jun YIN ; Li LI ; Yun-Yun QUAN ; Ting WANG ; Xin ZHU ; Rui-Rong TAN ; Jin ZENG ; Hua HUA ; Qin-Xuan WU ; Jun-Ning ZHAO
Chinese journal of integrative medicine 2025;31(7):590-599
OBJECTIVE:
To investigate the anti-inflammatory effect of rutaecarpine (RUT) on monosodium urate crystal (MSU)-induced murine peritonitis in mice and further explored the underlying mechanism of RUT in lipopolysaccharide (LPS)/MSU-induced gout model in vitro.
METHODS:
In MSU-induced mice, 36 male C57BL/6 mice were randomly divided into 6 groups of 8 mice each group, including the control group, model group, RUT low-, medium-, and high-doses groups, and prednisone acetate group. The mice in each group were orally administered the corresponding drugs or vehicle once a day for 7 consecutive days. The gout inflammation model was established by intraperitoneal injection of MSU to evaluate the anti-gout inflammatory effects of RUT. Then the proinflammatory cytokines were measured by enzyme-linked immunosorbent assay (ELISA) and the proportions of infiltrating neutrophils cytokines were detected by flow cytometry. In LPS/MSU-treated or untreated THP-1 macrophages, cell viability was observed by cell counting kit 8 and proinflammatory cytokines were measured by ELISA. The percentage of pyroptotic cells were detected by flow cytometry. Respectively, the mRNA and protein levels were measured by real-time quantitative polymerase chain reaction (qRT-PCR) and Western blot, the nuclear translocation of nuclear factor κB (NF-κB) p65 was observed by laser confocal imaging. Additionally, surface plasmon resonance (SPR) and molecular docking were applied to validate the binding ability of RUT components to tumor necrosis factor α (TNF-α) targets.
RESULTS:
RUT reduced the levels of infiltrating neutrophils and monocytes and decreased the levels of the proinflammatory cytokines interleukin 1β (IL-1β) and interleukin 6 (IL-6, all P<0.01). In vitro, RUT reduced the production of IL-1β, IL-6 and TNF-α. In addition, RT-PCR revealed the inhibitory effects of RUT on the mRNA levels of IL-1β, IL-6, cyclooxygenase-2 and TNF-α (P<0.05 or P<0.01). Mechanistically, RUT markedly reduced protein expressions of tumor necrosis factor receptor (TNFR), phospho-mitogen-activated protein kinase (p-MAPK), phospho-extracellular signal-regulated kinase, phospho-c-Jun N-terminal kinase, phospho-NF-κB, phospho-kinase α/β, NOD-like receptor thermal protein domain associated protein 3 (NLRPS), cleaved-cysteinyl aspartate specific proteinase-1 and cleaved-gasdermin D in macrophages (P<0.05 or P<0.01). Molecularly, SPR revealed that RUT bound to TNF-α with a calculated equilibrium dissociation constant of 31.7 µmol/L. Molecular docking further confirmed that RUT could interact directly with the TNF-α protein via hydrogen bonding, van der Waals interactions, and carbon-hydrogen bonding.
CONCLUSION
RUT alleviated MSU-induced peritonitis and inhibited the TNFR1-MAPK/NF-κB and NLRP3 inflammasome signaling pathway to attenuate gouty inflammation induced by LPS/MSU in THP-1 macrophages, suggesting that RUT could be a potential therapeutic candidate for gout.
Animals
;
NF-kappa B/metabolism*
;
Male
;
Indole Alkaloids/therapeutic use*
;
Signal Transduction/drug effects*
;
Mice, Inbred C57BL
;
Inflammation/complications*
;
Uric Acid
;
Quinazolines/therapeutic use*
;
NLR Family, Pyrin Domain-Containing 3 Protein/metabolism*
;
Humans
;
Gout/chemically induced*
;
Inflammasomes/metabolism*
;
Cytokines/metabolism*
;
THP-1 Cells
;
Mitogen-Activated Protein Kinases/metabolism*
;
Mice
;
Molecular Docking Simulation
;
Lipopolysaccharides
;
Quinazolinones
9.Curcumin-loaded nanoparticles reversed radiotherapy-triggered enhancement of MDR1 expression of CNE-2 cells in nasopharyngeal carcinoma.
Guoqing ZENG ; Nan LIAO ; Ning LI ; Gaixia ZHANG ; Yi SU ; Jiangshun SONG
Journal of Clinical Otorhinolaryngology Head and Neck Surgery 2025;39(4):351-356
Objective:This study explored the effect of nanoparticle-encapsulated curcumin on the highly expressed multidrug resistance gene 1 (MDR1) in a human low-differentiated nasopharyngeal carcinoma cell line (CNE2). Methods:Curcumin/chitosan deoxycholic acid nanoparticles were prepared, and the cells were subjected to different treatments: radiotherapy, empty carriers, curcumin, and curcumin-loaded nanoparticles. Cell survival was analyzed using the clonogenic assay, and assessments of apoptosis, MDR1 levels, and miR593 levels were conducted. Results:The cell survival fractions in the curcumin group and the curcumin-loaded nanoparticles group were significantly reduced. Notably, higher apoptosis rates were observed in cells treated with curcumin or curcumin-loaded nanoparticles compared to those that received only radiotherapy. Moreover, a decreased MDR1 level was noted in both the curcumin group and the curcumin-loaded nanoparticles group, with further reduction in MDR1 expression observed in the nanoparticle group (P<0.05). Enhanced expression of miR593 was found in the curcumin group and the curcumin-loaded nanoparticles group, with a relatively higher level in the nanoparticle group (P<0.05). Curcumin encapsulated in nanoparticles exhibited a stronger radiosensitizing effect. The combination of curcumin and radiotherapy effectively inhibited nasopharyngeal carcinoma (NPC) tumor growth, suppressed MDR1 expression, and enhanced miR593 levels. After inhibiting miR593, MDR1 expression increased. The radiosensitizing effect of curcumin-loaded nanoparticles was regulated by miR593 rather than being triggered by MDR1. Conclusion:Curcumin-loaded nanoparticles mediated enhanced expression of miR593, which in turn inhibited the transcription and translation of the MDR1 gene, thereby reducing the radioresistance of NPC and effectively restraining its growth.
Humans
;
Curcumin/pharmacology*
;
Nasopharyngeal Neoplasms/pathology*
;
Nasopharyngeal Carcinoma
;
Nanoparticles
;
Cell Line, Tumor
;
Apoptosis/drug effects*
;
MicroRNAs
;
ATP Binding Cassette Transporter, Subfamily B
;
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism*
;
Cell Survival
10.The Icarian flight of antibody-drug conjugates: target selection amidst complexity and tackling adverse impacts.
Han LIU ; Hongye ZENG ; Xiaojing QIN ; Wenjing NING ; Lin XU ; Shiting YANG ; Xue LIU ; Wenxin LUO ; Ningshao XIA
Protein & Cell 2025;16(7):532-556
Antibody-drug conjugates (ADCs) represent a promising class of targeted cancer therapeutics that combine the specificity of monoclonal antibodies with the potency of cytotoxic payloads. Despite their therapeutic potential, the use of ADCs faces significant challenges, including off/on-target toxicity and resistance development. This review examines the current landscape of ADC development, focusing on the critical aspects of target selection and antibody engineering. We discuss strategies to increase ADC efficacy and safety, including multitarget approaches, pH-dependent antibodies, and masked peptide technologies. The importance of comprehensive antigen expression profiling in both tumor and normal tissues is emphasized, highlighting the role of advanced technologies, such as single-cell sequencing and artificial intelligence, in optimizing target selection. Furthermore, we explore combination therapies and innovations in linker‒payload chemistry, which may provide approaches for expanding the therapeutic window of ADCs. These advances pave the way for the development of more precise and effective cancer treatments, potentially extending ADC applications beyond oncology.
Humans
;
Immunoconjugates/adverse effects*
;
Neoplasms/immunology*
;
Animals
;
Antibodies, Monoclonal/therapeutic use*
;
Antineoplastic Agents/therapeutic use*

Result Analysis
Print
Save
E-mail