1.Ameliorative Effect of Wendantang Combined with Danshenyin and Dushentang on Ischemic Heart Disease with Phlegm-stasis Syndrome in Mice Based on Circulating Monocytes
Fenghe YANG ; Ziqi TIAN ; Zhiqian SONG ; Shitao PENG ; Wenjie LU ; Tao LIN ; Chun WANG ; Zhangchi NING
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):22-32
ObjectiveTo investigate the ameliorative effect of Wendantang combined with Danshenyin and Dushentang (WDD) on mice with ischemic heart disease (IHD) presenting phlegm-stasis syndrome based on the inflammatory phenotype and differentiation of circulating monocytes. MethodsA model of IHD with phlegm-stasis syndrome was established using left anterior descending coronary artery ligation supplemented with a high-fat diet. Eighty model mice were randomly assigned to the model group, WDD low-dose group (WDD-L), WDD medium-dose group (WDD-M), WDD high-dose group (WDD-H), and atorvastatin calcium tablet group, with 16 mice in each group. An additional 16 C57BL/6J mice were designated as the sham-operation group. The WDD groups received intragastric administration at doses of 8.91, 17.81, 35.62 g·kg-1, and the atorvastatin calcium tablet group received the corresponding drug at 1.3 mg·kg-1, twice daily. The sham-operation and model groups were given the same volume of pure water by gavage each day. After 5 consecutive weeks of administration, the cardiac index was calculated. Cardiac function was assessed by echocardiography. Myocardial histopathology was examined by hematoxylin-eosin (HE) staining. Serum N-terminal pro-B-type natriuretic peptide (pro-BNP) content was measured by enzyme-linked immunosorbent assay (ELISA). Hemorheological parameters were analyzed using an automated hemorheology analyzer. Serum levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) were determined using an automated biochemical analyzer. Changes in circulating monocytes were detected by flow cytometry. Mouse bone marrow mononuclear cells were isolated in vitro and divided into blank group, model serum group, WDD-L drug-containing serum group, WDD-M drug-containing serum group, and WDD-H drug-containing serum group. CD36 expression and macrophage differentiation in each group were assessed by flow cytometry. The mechanism by which WDD mediates circulating monocyte differentiation was further explored using CD36 knockdown/overexpression RAW264.7 cell lines. ResultsCompared with the sham-operation group, the model group showed a significantly increased cardiac index (P0.01), significantly decreased fractional shortening (FS) (P0.01), and significantly increased left ventricular end-diastolic internal diameter (LVDD) and left ventricular end-systolic internal diameter (LVDS) (P0.01). Cardiomyocytes exhibited marked deformation and necrosis with inflammatory cell infiltration. Serum pro-BNP levels were significantly elevated (P0.01), and whole-blood viscosity (BV) at high, medium, and low shear rates was significantly increased (P0.01). Compared with the model group, the WDD groups showed significantly reduced cardiac index (P0.05, P0.01), significantly increased FS (P0.05, P0.01), significantly decreased LVDD and LVDS (P0.01), markedly improved cardiomyocyte morphology, significantly reduced inflammatory infiltration, significantly decreased serum pro-BNP levels (P0.01), and significantly decreased BV at high, medium, and low shear rates (P0.01), with the most pronounced improvement observed in the WDD-M group. Compared with the sham-operation group, TC, TG, and LDL levels were significantly increased in the model group (P0.05, P0.01), while HDL levels were significantly decreased (P0.05). After WDD-H treatment, TC, TG, and LDL levels were significantly reduced and HDL levels were significantly increased in mice (P0.05, P0.01). Compared with the sham-operation group, classical monocytes in blood and bone marrow and intermediate monocytes in blood were significantly increased in the model group (P0.01), whereas intermediate monocytes in bone marrow and non-classical monocytes in blood were significantly decreased (P0.01). After WDD administration, all circulating monocyte subsets in blood and bone marrow were significantly alleviated (P0.05, P0.01), with the WDD-M group showing the optimal effect. In vitro, compared with the blank group, CD36 expression on bone marrow monocytes and the proportion of differentiated macrophages were significantly increased in the model serum group (P0.01), and CD36 expression was significantly upregulated on RAW264.7 cells (P0.01). Compared with the model serum group, all drug-containing serum groups exhibited significantly reduced CD36 expression on bone marrow monocytes and significantly reduced macrophage differentiation (P0.01). WDD downregulated CD36 expression in both CD36 knockdown and overexpression RAW264.7 cell lines (P0.05, P0.01), with the strongest regulatory effect observed in the WDD-M drug-containing serum group. ConclusionWDD can significantly improve the manifestations of phlegm-stasis syndrome in IHD mice and reduce the proportion of classical circulating monocytes. Its mechanism may be related to the inhibition of CD36 expression on classical circulating monocytes.
2.Ameliorative Effect of Wendantang Combined with Danshenyin and Dushentang on Ischemic Heart Disease with Phlegm-stasis Syndrome in Mice Based on Circulating Monocytes
Fenghe YANG ; Ziqi TIAN ; Zhiqian SONG ; Shitao PENG ; Wenjie LU ; Tao LIN ; Chun WANG ; Zhangchi NING
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(3):22-32
ObjectiveTo investigate the ameliorative effect of Wendantang combined with Danshenyin and Dushentang (WDD) on mice with ischemic heart disease (IHD) presenting phlegm-stasis syndrome based on the inflammatory phenotype and differentiation of circulating monocytes. MethodsA model of IHD with phlegm-stasis syndrome was established using left anterior descending coronary artery ligation supplemented with a high-fat diet. Eighty model mice were randomly assigned to the model group, WDD low-dose group (WDD-L), WDD medium-dose group (WDD-M), WDD high-dose group (WDD-H), and atorvastatin calcium tablet group, with 16 mice in each group. An additional 16 C57BL/6J mice were designated as the sham-operation group. The WDD groups received intragastric administration at doses of 8.91, 17.81, 35.62 g·kg-1, and the atorvastatin calcium tablet group received the corresponding drug at 1.3 mg·kg-1, twice daily. The sham-operation and model groups were given the same volume of pure water by gavage each day. After 5 consecutive weeks of administration, the cardiac index was calculated. Cardiac function was assessed by echocardiography. Myocardial histopathology was examined by hematoxylin-eosin (HE) staining. Serum N-terminal pro-B-type natriuretic peptide (pro-BNP) content was measured by enzyme-linked immunosorbent assay (ELISA). Hemorheological parameters were analyzed using an automated hemorheology analyzer. Serum levels of total cholesterol (TC), triglycerides (TG), low-density lipoprotein (LDL), and high-density lipoprotein (HDL) were determined using an automated biochemical analyzer. Changes in circulating monocytes were detected by flow cytometry. Mouse bone marrow mononuclear cells were isolated in vitro and divided into blank group, model serum group, WDD-L drug-containing serum group, WDD-M drug-containing serum group, and WDD-H drug-containing serum group. CD36 expression and macrophage differentiation in each group were assessed by flow cytometry. The mechanism by which WDD mediates circulating monocyte differentiation was further explored using CD36 knockdown/overexpression RAW264.7 cell lines. ResultsCompared with the sham-operation group, the model group showed a significantly increased cardiac index (P<0.01), significantly decreased fractional shortening (FS) (P<0.01), and significantly increased left ventricular end-diastolic internal diameter (LVDD) and left ventricular end-systolic internal diameter (LVDS) (P<0.01). Cardiomyocytes exhibited marked deformation and necrosis with inflammatory cell infiltration. Serum pro-BNP levels were significantly elevated (P<0.01), and whole-blood viscosity (BV) at high, medium, and low shear rates was significantly increased (P<0.01). Compared with the model group, the WDD groups showed significantly reduced cardiac index (P<0.05, P<0.01), significantly increased FS (P<0.05, P<0.01), significantly decreased LVDD and LVDS (P<0.01), markedly improved cardiomyocyte morphology, significantly reduced inflammatory infiltration, significantly decreased serum pro-BNP levels (P<0.01), and significantly decreased BV at high, medium, and low shear rates (P<0.01), with the most pronounced improvement observed in the WDD-M group. Compared with the sham-operation group, TC, TG, and LDL levels were significantly increased in the model group (P<0.05, P<0.01), while HDL levels were significantly decreased (P<0.05). After WDD-H treatment, TC, TG, and LDL levels were significantly reduced and HDL levels were significantly increased in mice (P<0.05, P<0.01). Compared with the sham-operation group, classical monocytes in blood and bone marrow and intermediate monocytes in blood were significantly increased in the model group (P<0.01), whereas intermediate monocytes in bone marrow and non-classical monocytes in blood were significantly decreased (P<0.01). After WDD administration, all circulating monocyte subsets in blood and bone marrow were significantly alleviated (P<0.05, P<0.01), with the WDD-M group showing the optimal effect. In vitro, compared with the blank group, CD36 expression on bone marrow monocytes and the proportion of differentiated macrophages were significantly increased in the model serum group (P<0.01), and CD36 expression was significantly upregulated on RAW264.7 cells (P<0.01). Compared with the model serum group, all drug-containing serum groups exhibited significantly reduced CD36 expression on bone marrow monocytes and significantly reduced macrophage differentiation (P<0.01). WDD downregulated CD36 expression in both CD36 knockdown and overexpression RAW264.7 cell lines (P<0.05, P<0.01), with the strongest regulatory effect observed in the WDD-M drug-containing serum group. ConclusionWDD can significantly improve the manifestations of phlegm-stasis syndrome in IHD mice and reduce the proportion of classical circulating monocytes. Its mechanism may be related to the inhibition of CD36 expression on classical circulating monocytes.
3.Allogeneic lung transplantation in miniature pigs and postoperative monitoring
Yaobo ZHAO ; Ullah SALMAN ; Kaiyan BAO ; Hua KUI ; Taiyun WEI ; Hongfang ZHAO ; Xiaoting TAO ; Xinzhong NING ; Yong LIU ; Guimei ZHANG ; He XIAO ; Jiaoxiang WANG ; Chang YANG ; Feiyan ZHU ; Kaixiang XU ; Kun QIAO ; Hongjiang WEI
Organ Transplantation 2026;17(1):95-105
Objective To explore the feasibility and reference value of allogeneic lung transplantation and postoperative monitoring in miniature pigs for lung transplantation research. Methods Two miniature pigs (R1 and R2) underwent left lung allogeneic transplantation. Complement-dependent cytotoxicity tests and blood cross-matching were performed before surgery. The main operative times and partial pressure of arterial oxygen (PaO2) after opening the pulmonary artery were recorded during surgery. Postoperatively, routine blood tests, biochemical blood indicators and inflammatory factors were detected, and pathological examinations of multiple organs were conducted. Results The complement-dependent cytotoxicity test showed that the survival rate of lymphocytes between donors and recipients was 42.5%-47.3%, and no agglutination reaction occurred in the cross-matching. The first warm ischemia times of D1 and D2 were 17 min and 10 min, respectively, and the cold ischemia times were 246 min and 216 min, respectively. Ultimately, R1 and R2 survived for 1.5 h and 104 h, respectively. Postoperatively, in R1, albumin (ALB) and globulin (GLB) decreased, and alanine aminotransferase increased; in R2, ALB, GLB and aspartate aminotransferase all increased. Urea nitrogen and serum creatinine increased in both recipients. Pathological results showed that in R1, the transplanted lung had partial consolidation with inflammatory cell infiltration, and multiple organs were congested and damaged. In R2, the transplanted lung had severe necrosis with fibrosis, and multiple organs had mild to moderate damage. The expression levels of interleukin-1β and interleukin-6 increased in the transplanted lungs. Conclusions The allogeneic lung transplantation model in miniature pigs may systematically evaluate immunological compatibility, intraoperative function and postoperative organ damage. The data obtained may provide technical references for subsequent lung transplantation research.
4.A bibliometric and visual analysis of the literature published in the journal of Organ Transplantation since its inception
Xi CAO ; Tao HUANG ; Qiwei YANG ; Lin YU ; Xiaowen WANG ; Wenfeng ZHU ; Haoqi CHEN ; Ning FAN ; Genshu WANG
Organ Transplantation 2026;17(1):133-142
Objective To systematically analyze the literature characteristics of Journal of Organ Transplantation since its inception. Methods Using the China National Knowledge Infrastructure (CNKI) academic journal full-text database as the data source, all articles published in the Journal of Organ Transplantation from January 2010 to August 2025 were retrieved. After excluding non-academic papers, a total of 1 568 research papers were included. R language 4.3.0, Bibliometrix package 3.2.1, and Citespace software were used to analyze the number of publications, publishing institutions, authors, keywords and other aspects. Results The number of publications in Journal of Organ Transplantation increased from an average of 82 articles per year in the early years after its inception to 113 articles per year in recent years, a growth of 37.8%. The geographical distribution of publishing institutions covers 32 provinces, cities and autonomous regions nationwide, mainly concentrated in the South China, East China and North China regions, and has now basically covered the central and western regions in recent years. The author collaboration network includes 45 authors distributed across 7 major collaboration clusters, forming a stable multi-level national research system centered on key university-affiliated hospitals. The high-frequency keywords are dominated by "liver transplantation" (425 times) and "kidney transplantation" (396 times). The theme evolution shows a clear three-stage characteristic: initially focusing on clinical technology application, deepening to immune mechanism exploration in the middle stage, and recently (since 2022) focusing on cutting-edge research areas such as xenotransplantation. Conclusions Journal of Organ Transplantation has witnessed the rapid development of China's organ transplantation cause, fully reflecting the research status and trends in China's organ transplantation field, and has provided an important platform for the future development and international cooperation in China's organ transplantation field.
5.Optimal Ratio of Chuanxiong Rhizoma-Carthami Flos Couplet Medicines and Its Anti-ischemic Stroke Effect
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(5):21-31
ObjectiveThis study aimed to investigate the optimal compatibility ratio of the Chuanxiong Rhizoma-Carthami Flos (CR-CF) couplet medicines in ischemic stroke (IS) therapy and its pharmacological action mechanism, providing a scientific basis for the clinical application of CR-CF couplet medicines in IS therapy. MethodsThe chemical composition of CR-CF was analyzed using liquid chromatography mass spectrometry (LC-MS/MS). The contents of eight characteristic chemical components in aqueous extracts of CR-CF with common clinical compatibility ratios (1∶1, 1∶2, 1∶3, 3∶2, 2∶1) were determined by ultra-high performance liquid chromatography(UHPLC). An oxygen-glucose deprivation/reoxygenation (OGD/R)-induced mouse hippocampal neuron HT22 cell injury model was established, and cells were treated with different CR-CF compatibility ratios. The collaborative index (CI) was calculated by using CompuSyn software. A cerebral artery occlusion/reperfusion (MCAO/R) model of rats was induced by using the modified Longa suture method. The rats were divided into the sham group, model group, Chuanxiong Rhizoma (CR) group (1.3 g·kg-1), Carthami Flos (CF) group (3.9 g·kg-1), CR-CF group (5.2 g·kg-1), and edaravone group (5 mg·kg-1). Neuronal defect scores were assessed by the Longa scoring method. Cerebral infarction volume was measured by 2,3,5-triphenyltetrazolium chloride(TTC) staining. Neuronal damage was observed via hematoxylin-eosin (HE) staining. Neuronal apoptosis of rats was detected by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL) staining, and the expression of apoptosis-related proteins was analyzed by Western blot. Label-free proteomics was employed to screen differentially expressed proteins, and Western blot was used to examine the expression of phosphatidylinositol 3-kinase/protein kinase B(PI3K/Akt) signaling pathway-related proteins. Finally, molecular docking was performed to predict the binding affinity of eight active constituents in CR-CF (1∶3) with PI3K. ResultsWhen CR-CF was combined at a 1∶3 ratio, the total content of the eight active constituents in the extract was the highest, and the synergistic protective effect on OGD/R-injured HT22 cells was the strongest (CI=0.308). Animal experiments showed that compared with the sham group, the model group exhibited increased neuroecological score points (P<0.01), larger cerebral infarction volumes (P<0.01), aggravated brain tissue damage, elevated neuronal apoptosis (P<0.01), and increased B-cell lymphoma-2(Bcl-2)-associated X protein (Bax)/Bcl-2 and cleaved Cysteinyl aspartate specific proteinase-3/Cysteinyl aspartate specific proteinase-3 (cleaved Caspase-3/Caspase-3) ratios (P<0.01). Compared with the model group, CR-CF (1∶3) significantly reduced neurological scores (P<0.01), significantly decreased cerebral infarction volume (P<0.01), alleviated brain tissue damage, inhibited neuronal apoptosis (P<0.01), and significantly lowered the Bax/Bcl-2 and cleaved Caspase-3/Caspase-3 ratios (P<0.01). The therapeutic effect of CR-CF (1∶3) was superior to that of CR or CF alone. Proteomic analysis revealed that CR-CF (1∶3) activated the PI3K/Akt signaling pathway. Validation experiments demonstrated that compared with the sham group, the model group showed obviously reduced p-PI3K/PI3K and p-Akt/Akt (P<0.05). Compared with the model group, p-PI3K/PI3K and p-Akt/Akt ratios (P<0.05) obviously increased. Compared with the CR-CF group, the 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one LY294002 inhibitor+CR-CF group exhibited obviously decreased p-PI3K/PI3K and p-Akt/Akt (P<0.05). Molecular docking results indicated that the active constituents of CR-CF (1∶3) had strong binding affinity with PI3K. ConclusionThe CR-CF couplet medicines at a 1∶3 ratio exhibit optimal synergistic effects, and their anti-IS mechanism is closely related to activation of the PI3K/Akt signaling pathway and inhibition of neuronal apoptosis.
6.Jianpi Xiaoai Prescription Ameliorates Chemotherapy Resistance in Colon Cancer by Targeting FGF2 to Inhibit PI3K/Akt Signaling Pathway
Xiaolan JIAN ; Kangwen NING ; Jiaxiang YANG ; Shenglan KOU ; Wanting KUANG ; Ziqi WANG ; Yuqin TAN ; Puhua ZENG ; Lingjuan TAN ; Wei PENG
Chinese Journal of Experimental Traditional Medical Formulae 2026;32(6):120-130
ObjectiveTo explore the effect and mechanism of Jianpi Xiaoai prescription (JPXA) in ameliorating the 5-fluorouracil (5-FU) resistance of colon cancer. MethodsA HCT116/5-FU resistant cell line was established. Different concentrations (10%, 15%, 20%) of JPXA-containing serum and drug-free serum were used for intervention, and 10% fetal bovine serum (10% FBS), fibroblast growth factor receptor (FGFR) inhibitor (AZD4547), and recombinant fibroblast growth factor 2 (FGF2) were set as the control groups. Sensitive HCT116 cells were used in the FGF2 group, while HCT116/5-FU cells were used in other groups. Drug resistance, the level of FGF2 in the cell culture medium, the mRNA level of FGF2 in cells, and the protein levels of FGF2/FGFR and phosphatidylinositol 3-kinase/protein kinase B (PI3K/Akt) were determined. The drug-resistant cells were transplanted into the axilla of nude mice to establish a tumor model. The modeled mice were allocated into model, JPXA (15 g·kg-1), 5-FU (0.02 g·kg-1), JPXA+5-FU (15 g·kg-1+0.02 g·kg-1), AZD4547 (0.012 5 g·kg-1), and AZD4547+5-FU (0.012 5 g·kg-1+0.02 g·kg-1) groups. The tumor growth and the protein levels of FGF/FGFR and PI3K/Akt in each group were observed. ResultsThe survival rate of HCT116/5-FU cells decreased in all the JPXA groups with different concentrations. The cell survival rate was decreased most obviously in the 20% JPXA group. The level of FGF2 in the cell culture medium and the mRNA level of FGF2 in cells of each JXPA group decreased, and the decrease was the most significant in the 20% group (P<0.01). HCT116/5-FU cells showed up-regulated protein levels of FGF2 and phosphorylated fibroblast growth factor receptor 1 (p-FGFR1), but down-regulated protein level of FGFR1 (P<0.01). JPXA down-regulated the expression of FGF2 and p-FGFR1 and up-regulated the expression of FGFR1 (P<0.05). In addition, JPXA down-regulated the expression levels of phosphorylated protein kinase B (p-Akt) and phosphorylated mammalian target of rapamycin (p-mTOR), while up-regulating the expression levels of Akt and Bcl-2-asociated death promoter (Bad) (P<0.05). Animal experiments showed that the JPXA combined with 5-FU significantly inhibited the growth of drug-resistant tumors, reduced the protein levels of FGF2, p-FGFR1, phosphorylated phosphatidylinositol-3-kinase (p-PI3K), p-Akt, and p-mTOR, and increased the expression of Bad. It indicated that JPXA can inhibit the FGF2/FGFR1 signaling in colon cancer and regulate PI3K/Akt and downstream signaling pathways. ConclusionJPXA can ameliorate the chemotherapy resistance of colon cancer through down-regulating FGF2 expression and inhibiting the activation of the PI3K/Akt signaling pathway.
7.Current status of research on the mechanism of action of emodin in the prevention and treatment of chronic liver diseases
Yajie CHEN ; Xin WANG ; Yunjuan WU ; Ying SU ; Yuhan WANG ; Jinxue ZHANG ; Ning YAO ; Ying QIN ; Xiaoning ZUO
Journal of Clinical Hepatology 2026;42(1):228-234
Chronic liver diseases are a group of diseases in which the liver is subjected to a variety of injuries over a long period of time, resulting in irreversible pathological changes that last longer than 6 months. Emodin (EMO) is a natural anthraquinone derivative derived from Rheum officinale, and its pharmacological effect has been extensively studied, exhibiting a variety of biological properties and involving multiple signaling molecules and pathways. Western medicine or surgical treatment is currently the main treatment regimen for chronic liver diseases, and the advance in treatment is limited by various reasons such as side effects and high costs. Due to its natural origin and efficacy, EMO has unique advantages in the treatment of chronic liver diseases and has now become a research hotspot. This article summarizes the therapeutic effect of EMO on chronic liver diseases and its mechanism, in order to provide a certain scientific basis for the traditional Chinese medicine treatment of chronic liver diseases and the development of drugs in clinical practice.
8.Key Information Research on Famous Classical Formula Shegan Mahuangtang
Cheng LUO ; Yuanhang YE ; Bo NING ; Fei WANG
Chinese Journal of Experimental Traditional Medical Formulae 2025;31(6):180-188
Shegan Mahuangtang was a famous classical formula for treating asthma and is included in the the Catalogue of Ancient Famous Classical Formulas(The Second Batch). By means of bibliometrics, this study conducts a textual research and analysis on the key information of its formula origin, composition, drug origins, processing, dosage, decocting methods, efficacy, and clinical application. According to research, Shegan Mahuangtang was first recorded in Synopsis of the Golden Chamber and is the ancestral formula for treating cold asthma, which has been used to this day. Suggestions for the drug origins in Shegan Mahuangtang is as follows:Shegan is selected from the dried rhizomes of Belamcanda chinensis(Iridaceae), Mahuang is selected from the dried herbaceous stems of Ephedra sinica(Ephedraceae), Shengjiang is selected from the fresh rhizomes of Zingiber officinale(Zingiberaceae), Xixin is selected from the dried roots and rhizomes of Asarum heterotropoides var. mandshuricum, A. sieboldii var. seoulense or A. sieboldii(Aristolochiaceae), Ziwan is selected from the dried roots and rhizomes of Aster tataricus(Compositae), Kuandonghua is selected from the dried flower buds of Tussilago farfara(Compositae), Nanwuweizi is selected from the dried mature fruits of Schisandra sphenanthera(Magnoliaceae), Dazao is selected from the dried mature fruit of Ziziphus jujuba(Rhamnaceae), and Banxia, a plant of the Araceae family, is selected as the processed products of dried tubers from Pinellia ternata. The recommended dosage is 41.4 g of Shegan, Xixin, Ziwan and Kuandonghua, 55.2 g of Mahuang and Shengjiang, 37.5 g of Nanwuweizi, 21 g of Dazao, 34.5 g of Banxia. The decoction method is to boil Mahuang first in 2.4 L of water, remove the froth on the top, and add the rest of the herbs and decoct them together, and then boil them to 600 mL, and then take it at warm temperature, 200 mL each time, 3 times a day. In terms of clinical application, Shegan Mahuangtang is most commonly used for respiratory system diseases, especially in the treatment of adult or pediatric bronchial asthma and cough variant asthma. Phlegm sound in the throat is the core symptom of Shegan Mahuangtang in clinical practice, and the core pathogenesis is "cold fluid stagnated in the lungs". By excavating and sorting out the ancient and modern literature of Shegan Mahuangtang, key information is confirmed, which can provide literature reference for the modern clinical application and new drug development of this famous classical formula.
9.Inhibitory effect of pterostilbene on high glucose-mediated endothelial-to-mesenchymal transition in human retinal microvascular endothelial cells
Xiaolan* WANG ; Hanyi* YANG ; Yimeng ZHANG ; Sida LIU ; Chengming CHEN ; Tingke XIE ; Yixuan CHEN ; Jiayi NING ; Jing HAN
International Eye Science 2025;25(3):359-364
AIM: To investigate the potential inhibitory effect of pterostilbene on the endothelial-to-mesenchymal transition(EndMT)induced by high glucose conditions in human retinal microvascular endothelial cells(HRMECs).METHODS: The optimal concentration of pterostilbene for treating HRMECs was determined using the CCK-8 assay, with 12.5 and 25 μmol/L concentrations selected for subsequent experiments. Four experimental groups were established: control group, high glucose group, high glucose combined with 12.5 μmol/L pterostilbene treatment group, and high glucose combined with 25 μmol/L pterostilbene treatment group. The expression levels of HDAC7 and EndMT-associated markers were detected via Western blot analysis. Cell migration ability was assessed using Transwell migration assays and scratch wound healing tests, while vasculogenic capability was evaluated through tube formation assays.RESULTS: The CCK-8 assay revealed that pterostilbene at a concentration of 22.07 μmol/L inhibited 50% of cell viability in HRMECs. Western blot analysis demonstrated that compared with the control group, the expression levels of HDAC7, ZEB1, Vimentin, and Snail were significantly upregulated in HRMECs cultured in high glucose(all P<0.01), while the expressions of VE-cadherin and CD31 were significantly reduced(all P<0.01). Compared to the high glucose group, the treatment with 12.5 and 25 μmol/L pterostilbene significantly reduced the expression of HDAC7, ZEB1, Vimentin, and Snail under high glucose conditions(all P<0.01). Notably, 25 μmol/L pterostilbene enhanced the expression of VE-cadherin and CD31(all P<0.01). Scratch wound healing tests revealed that HRMECs treated with high glucose exhibited a significantly increased cell migration rate compared to the control group(P<0.05), while the application of 25 μmol/L pterostilbene significantly suppressed HRMECs migration under high glucose conditions(P<0.01). Transwell migration assays demonstrated that the cell migration rate in the high glucose group was significantly higher than that in the control group(P<0.01), with cell migration rate markedly reduced following treatment with both of 12.5 and 25 μmol/L pterostilbene(all P<0.01). The tube formation assay revealed that the ability of HRMECs to form tubular structures was significantly enhanced under high glucose conditions(P<0.01), and both 12.5 and 25 μmol/L of pterostilbene effectively inhibited this effect(all P<0.01).CONCLUSION: Pterostilbene can inhibit HDAC7 expression, suppress EndMT-mediated migration of HRMECs, and impair tube formation under high-glucose conditions.
10.Inhibitory effect of pterostilbene on high glucose-mediated endothelial-to-mesenchymal transition in human retinal microvascular endothelial cells
Xiaolan* WANG ; Hanyi* YANG ; Yimeng ZHANG ; Sida LIU ; Chengming CHEN ; Tingke XIE ; Yixuan CHEN ; Jiayi NING ; Jing HAN
International Eye Science 2025;25(3):359-364
AIM: To investigate the potential inhibitory effect of pterostilbene on the endothelial-to-mesenchymal transition(EndMT)induced by high glucose conditions in human retinal microvascular endothelial cells(HRMECs).METHODS: The optimal concentration of pterostilbene for treating HRMECs was determined using the CCK-8 assay, with 12.5 and 25 μmol/L concentrations selected for subsequent experiments. Four experimental groups were established: control group, high glucose group, high glucose combined with 12.5 μmol/L pterostilbene treatment group, and high glucose combined with 25 μmol/L pterostilbene treatment group. The expression levels of HDAC7 and EndMT-associated markers were detected via Western blot analysis. Cell migration ability was assessed using Transwell migration assays and scratch wound healing tests, while vasculogenic capability was evaluated through tube formation assays.RESULTS: The CCK-8 assay revealed that pterostilbene at a concentration of 22.07 μmol/L inhibited 50% of cell viability in HRMECs. Western blot analysis demonstrated that compared with the control group, the expression levels of HDAC7, ZEB1, Vimentin, and Snail were significantly upregulated in HRMECs cultured in high glucose(all P<0.01), while the expressions of VE-cadherin and CD31 were significantly reduced(all P<0.01). Compared to the high glucose group, the treatment with 12.5 and 25 μmol/L pterostilbene significantly reduced the expression of HDAC7, ZEB1, Vimentin, and Snail under high glucose conditions(all P<0.01). Notably, 25 μmol/L pterostilbene enhanced the expression of VE-cadherin and CD31(all P<0.01). Scratch wound healing tests revealed that HRMECs treated with high glucose exhibited a significantly increased cell migration rate compared to the control group(P<0.05), while the application of 25 μmol/L pterostilbene significantly suppressed HRMECs migration under high glucose conditions(P<0.01). Transwell migration assays demonstrated that the cell migration rate in the high glucose group was significantly higher than that in the control group(P<0.01), with cell migration rate markedly reduced following treatment with both of 12.5 and 25 μmol/L pterostilbene(all P<0.01). The tube formation assay revealed that the ability of HRMECs to form tubular structures was significantly enhanced under high glucose conditions(P<0.01), and both 12.5 and 25 μmol/L of pterostilbene effectively inhibited this effect(all P<0.01).CONCLUSION: Pterostilbene can inhibit HDAC7 expression, suppress EndMT-mediated migration of HRMECs, and impair tube formation under high-glucose conditions.

Result Analysis
Print
Save
E-mail