1.Behavior of Injured Lamina in Lumbar Burst Fractures during Reduction Maneuvers: A Biomechanical Study.
Asian Spine Journal 2017;11(4):507-512
STUDY DESIGN: An experimental biomechanical study. PURPOSE: This study aims to investigate the behavior of a lamina injury in lumbar burst fractures during reduction maneuvers. OVERVIEW OF LITERATURE: Lumbar burst fractures are frequently accompanied by a lamina fracture. Many researchers concluded that any reduction maneuver will close the fractured lamina edges and possibly crush the entrapped neural elements. This conclusion did not rely on solid biomechanical trials and was based primarily on clinical experience. METHODS: Eighteen fresh-frozen lamb spines were randomly divided into three groups. Using the preinjury and the dropped-mass technique, a burst fracture model was developed. A central laminectomy of 5 mm of the L3 lumbar spine was created to mimic a complete type of lamina fracture. To measure the movement of the fractured laminar edges, two holes were drilled on both sides of the upper and lower regions of the lamina to allow for optic marker placement. A single specific spine movement was applied to each group: traction, flexion, and extension. Gap changes were measured by camera extensometers. RESULTS: After traction, the average values of the upper and lower aspects of the lamina interval showed narrowing of 1.65±0.82 mm and 1.97±1.14 mm, respectively. No statistical significance was detected between the two aspects. The upper and lower regions of the lamina gap behaved differently during extension. At 10°, 20°, and 30°, the upper part of the lamina interval was widened by an average of 0.016±0.024, 0.29±0.32, and 1.73±1.45 mm, respectively, whereas the lower part was narrowed by an average of 0.023±0.012, 0.47±0.038, and 1.94±1.46 mm, respectively. CONCLUSIONS: Neural element crushing may take place, particularly at the lower aspect of the fractured lamina gap during extension and throughout the whole lamina gap during traction. The lamina gap widens during flexion. Reduction maneuvers should be attempted after exploring the fractured lamina to prevent further neurological compromise.
Laminectomy
;
Spine
;
Traction
2.Straight-Forward versus Bicortical Fixation Penetrating Endplate in Lumbosacral Fixation-A Biomechanical Study
Ahmet KARAKASLI ; Nihat ACAR ; Bora UZUN
Journal of Korean Neurosurgical Society 2018;61(2):180-185
OBJECTIVE: Many lumbosacral fixation techniques have been described to offer a more screw-bone purchase. The forward anatomical fixation parallel to the endplate is still the most preferred method. Literature revealed little knowledge regarding the mechanical stability of lumbosacral trans-endplate fixation compared to the traditional trans-pedicular screw fixation method. The aim of this study is to assess the pull-out strength of lumbosacral screws penetrating the end plate and comparing it to the conventional trans-pedicular screw insertion method.METHODS: Eight lumbar and eight sacral vertebrae, with average age 69.4 years, Left pedicles of the 5th lumbar vertebrae were used for trans-endplate screw fixation, group 1A, right pedicles were used for anatomical trans-pedicular screw fixation, group 1B. In the sacral vertebrae, the right side S1 pedicles were used for trans-endplate fixation, group 2A, left side pedicles were used for anatomical trans-pedicular screw fixation, group 2B. The biomechanical tests were performed using the axial compression testing machine. All tests were applied using 2 mm/min traction speed.RESULTS: The average pull-out strength values of groups 1A and 1B were 403.78±11.71 N and 306.26±17.55 N, respectively. A statistical significance was detected with p=0.012. The average pull-out strength values of groups 2A and 2B were 388.73±17.03 N and 299.84±17.52 N, respectively. A statistical significance was detected with p=0.012.CONCLUSION: The trans-endplate lumbosacral fixation method is a trustable fixation method with a stronger screw-bone purchase and offer a good alternative for surgeons specially in patients with osteoporosis.
Humans
;
Lumbar Vertebrae
;
Methods
;
Osteoporosis
;
Spine
;
Surgeons
;
Traction
3.The Mechanical Effect of Rod Contouring on Rod-Screw System Strength in Spine Fixation.
Nihat ACAR ; Ahmet KARAKASLI ; Ahmet A KARAARSLAN ; Mehmet Hilal OZCANHAN ; Fatih ERTEM ; Mehmet ERDURAN
Journal of Korean Neurosurgical Society 2016;59(5):425-429
OBJECTIVE: Rod-screw fixation systems are widely used for spinal instrumentation. Although many biomechanical studies on rod-screw systems have been carried out, but the effects of rod contouring on the construct strength is still not very well defined in the literature. This work examines the mechanical impact of straight, 20° kyphotic, and 20° lordotic rod contouring on rod-screw fixation systems, by forming a corpectomy model. METHODS: The corpectomy groups were prepared using ultra-high molecular weight polyethylene samples. Non-destructive loads were applied during flexion/extension and torsion testing. Spine-loading conditions were simulated by load subjections of 100 N with a velocity of 5 mm min⁻¹, to ensure 8.4-Nm moment. For torsional loading, the corpectomy models were subjected to rotational displacement of 0.5° s⁻¹ to an end point of 5.0°, in a torsion testing machine. RESULTS: Under both flexion and extension loading conditions the stiffness values for the lordotic rod-screw system were the highest. Under torsional loading conditions, the lordotic rod-screw system exhibited the highest torsional rigidity. CONCLUSION: We concluded that the lordotic rod-screw system was the most rigid among the systems tested and the risk of rod and screw failure is much higher in the kyphotic rod-screw systems. Further biomechanical studies should be attempted to compare between different rod kyphotic angles to minimize the kyphotic rod failure rate and to offer a more stable and rigid rod-screw construct models for surgical application in the kyphotic vertebrae.
Molecular Weight
;
Polyethylene
;
Spine*