1.Survival of avirulent thermostable Newcastle disease virus (strain I-2)in raw, baked, oiled, and cooked white rice at ambient temperatures.
Philemon Nyangi WAMBURA ; Joanne MEERS ; Peter SPRADBROW
Journal of Veterinary Science 2007;8(3):303-305
Raw white rice has not been considered a good carrierfor oral vaccination, probably because of its antiviralactivity. Methods are required to overcome antiviralactivity in raw white rice. This study was carried out todetermine the effects of various treatments of raw whiterice on the survival of strain I-2 of Newcastle diseasevirus. These included cooking and baking the rice ormixing the rice with vegetable oil prior to coating withvaccine virus. The vaccine-coated rice was then stored for30min and 24h, followed by quantitative recovery of thevirus. Thirty min after mixing, uncooked, cooked, andbaked rice, and rice mixed with vegetable oil showed titersof 10(6.2), 10(7.2), 10(6.6), and 10(7.0) EID50/0.1ml, respectively.After storage for 24h at 22-25oC, the titers dropped to10(5.0), 10(6.5), 10(5.0), and 10(6.0) EID50/0.1ml for uncooked,cooked, baked, and oiled rice, respectively.
Animals
;
Chick Embryo
;
Chickens
;
Cookery
;
Newcastle Disease/*virology
;
Newcastle disease virus/growth & development/*physiology
;
Oryza sativa/chemistry/*virology
;
Viral Vaccines/chemistry
2.Comparison of plaque-forming characteristics and morphogenetic changes of Newcastle disease virus isolated from chickens and geese on host cells.
Xin FENG ; Zhan-Yun SONG ; Xiao-Huan ZOU ; Wen-Yu HAN ; Zhuang DING
Chinese Journal of Virology 2010;26(1):58-64
The plaque-forming characteristics of Newcastle disease viruses of chickens and geese source were compared on various cells. The result showed that there were obvious differences of plaque formation between F48E9 and NA-1 on Vero cells, chicken embryo fibroblast cells (CEF) and goose embryo fibroblast cells (GEF). The plaque-forming ability of NA-1 was higher than F48E9 on GEF, but lower than F48E9 on CEF. On Vero cells, the plaque-forming ability of NA-1 was slightly stronger than F48E9. It demonstrated that the plaque-forming characteristics were consistent with host tropism of virus. The morphogenesis of F48E9 and NA-1 on Vero cells was observed with transmission electron microscope. There were different replication processes between F48E9 and NA-1 on cells at different stages. NA-1 had stronger adaptability to host than F48E9 according to budding processes and envelope integrity.
Animals
;
Cercopithecus aethiops
;
Chick Embryo
;
Chickens
;
Geese
;
Host-Pathogen Interactions
;
Newcastle Disease
;
virology
;
Newcastle disease virus
;
growth & development
;
isolation & purification
;
physiology
;
ultrastructure
;
Poultry Diseases
;
virology
;
Vero Cells
;
Viral Plaque Assay
3.Construction and rescue of infectious cDNA clone of pigeon-origin Newcastle disease virus strain JS/07/04/Pi.
Yan-Mei ZHU ; Zeng-Lei HU ; Qing-Qing SONG ; Zhi-Qiang DUAN ; Min GU ; Shun-Lin HU ; Xiao-Quan WANG ; Xiu-Fan LIU
Chinese Journal of Virology 2012;28(1):67-72
Based on the complete genome sequence of pigeon-origin Newcastle disease virus strain JS/07/04/ Pi(genotype VIb), nine overlapped fragments covering its full-length genome were amplified by RT-PCR. The fragments were connected sequentially and then inserted into the transcription vector TVT7/R resulting in the TVT/071204 which contained the full genome of strain JS/07/04/Pi. The TVT/071204 was co-transfected with three helper plasmids pCI-NP, pCI-P and pCI-L into the BSR cells, and the transfected cells and culture supernatant were inoculated into 9-day-old SPF embryonated eggs 60 h post-transfection. The HA and HI tests were conducted following the death of embryonated eggs. The results showed that the allantoic fluids obtained were HA positive and the HA could be inhibited by anti-NDV serum which indicated that the strain JS/07/04/Pi was rescued successfully. The rescued virus rNDV/071204 showed similar growth kinetics to its parental virus in CEF. The successful recovery of this strain would contribute to the understanding of the host-specificity of pigeon-origin NDV and to the development of the novel vaccines against the NDV infection in pigeons.
Animals
;
Base Sequence
;
CHO Cells
;
Chick Embryo
;
Columbidae
;
virology
;
Cricetinae
;
Cricetulus
;
DNA, Complementary
;
genetics
;
Fluorescent Antibody Technique, Indirect
;
Molecular Sequence Data
;
Newcastle disease virus
;
genetics
;
growth & development