1.Effect of Tongdu Tiaoshen acupuncture on hippocampal neuronal ferroptosis in depression rats based on SLC7A11/GPX4 pathway.
Tingting QIAN ; Ling ZOU ; Zhi GAO ; Yu WU ; Yanbiao ZHAO ; Nan LI ; Hui LIU ; Meixiang SUN ; Peiyang SUN
Chinese Acupuncture & Moxibustion 2025;45(8):1120-1127
OBJECTIVE:
To observe the effects of Tongdu Tiaoshen acupuncture (acupuncture for unblocking the obstruction in the governor vessel and regulating the spirit) on the depression-like behavior and the hippocampal neuronal ferroptosis mediated by solute carrier family 7 member 11 (SLC7A11)/glutathione peroxidase 4 (GPX4) pathway in depression rats, and explore the mechanism of this therapy for depression.
METHODS:
Of 30 male SD rats of SPF grade, 24 rats were selected. According to the random number table, they were divided into a normal group (n=8) and a modeling group (n=16). The rats in the modeling group were subjected to chronic unpredictable mild stress (CUMS) for 28 consecutive days to establish depression model. After modeling, 16 successfully-modeled rats were randomly divided into a model group and an acupuncture group, 8 rats in each one. In the acupuncture group, Tongdu Tiaoshen acupuncture was applied to "Dazhui"(GV14), "Shuigou" (GV26), "Baihui" (GV20) and "Shenting" (GV24). This intervention measure was deliveredonce a day, continuously for 6 days. The intervention discontinued on day 7, and was completed in 4 weeks. Before and after modeling, and after intervention completion, the behavioristics detection was performed using sucrose preference experiment and open field experiment. After intervention, using hematoxylin-eosin (HE) and Nissl staining, the morphology of hippocampal neurons was observed; with Western blot method, the protein expression of GPX4, SLC7A11, Ferritin and acyl-CoA synthetase long-chain family 4 (ACSL4) in hippocampal tissues was detected; with the real-time fluorescence quantitative PCR adopted, the mRNA expression of GPX4, SLC7A11, Ferritin and ACSL4 was detected; and using colorimetry, the hippocampal iron content was determined.
RESULTS:
After modeling, the sucrose preference rates, the total distance of movement, the standing times and the boxes of horizontal crossing in the model group and the acupuncture group were lower than those in the normal group (P<0.01). After the intervention, the sucrose preference rates, the total distance of movement, the standing times and the boxes of horizontal crossing in the acupuncture group were higher than those in the model group (P<0.01, P<0.05). Compared with the normal group, the number of necrotic cells increased and the number of Nissl bodies decreased in the model group; and when compared with the model group, the neuronal pyknosis and necrosis were ameliorated, the cells were arranged more regularly, the neuronal structure was clear, the matrix was dense, the blood vessels were enriched and the number of Nissl bodies increased in the acupuncture group. In comparison with the normal group, the relative expression of protein and mRNA of hippocampal GPX4, SLC7A11 decreased (P<0.01), it increased in the expression of hippocampal Ferritin and ACSL4 (P<0.01) in the model group. When compared with the model group, in the acupuncture group, the relative expression of protein and mRNA of hippocampal GPX4, SLC7A11 was elevated (P<0.01, P<0.05), it was dropped for hippocampal Ferritin and ACSL4 (P<0.01). In the model group, the hippocampal iron content was elevated when compared with that in the normal group (P<0.01); and it was reduced in the acupuncture group when compared with that in the model group (P<0.05).
CONCLUSION
Tongdu Tiaoshen acupuncture attenuates depression-like behaviors in the depression rats, which may be related to regulating SLC7A11/GPX4 pathway and inhibiting neuronal ferroptosis in the hippocampus.
Animals
;
Ferroptosis
;
Male
;
Hippocampus/cytology*
;
Rats, Sprague-Dawley
;
Rats
;
Depression/enzymology*
;
Phospholipid Hydroperoxide Glutathione Peroxidase/genetics*
;
Acupuncture Therapy
;
Neurons/metabolism*
;
Humans
;
Acupuncture Points
;
Amino Acid Transport System y+/genetics*
;
Glutathione Peroxidase/genetics*
2.Advances in application of small-molecule compounds in neuronal reprogramming.
Zi-Wei DAI ; Hong LIU ; Yi-Min YUAN ; Jing-Yi ZHANG ; Shang-Yao QIN ; Zhi-Da SU
Acta Physiologica Sinica 2025;77(1):181-193
Neuronal reprogramming is an innovative technique for converting non-neuronal somatic cells into neurons that can be used to replace lost or damaged neurons, providing a potential effective therapeutic strategy for central nervous system (CNS) injuries or diseases. Transcription factors have been used to induce neuronal reprogramming, while their reprogramming efficiency is relatively low, and the introduction of exogenous genes may result in host gene instability or induce gene mutation. Therefore, their future clinical application may be hindered by these safety concerns. Compared with transcription factors, small-molecule compounds have unique advantages in the field of neuronal reprogramming, which can overcome many limitations of traditional transcription factor-induced neuronal reprogramming. Here, we review the recent progress in the research of small-molecule compound-mediated neuronal reprogramming and its application in CNS regeneration and repair.
Humans
;
Cellular Reprogramming/drug effects*
;
Neurons/cytology*
;
Animals
;
Transcription Factors
;
Small Molecule Libraries/pharmacology*
;
Nerve Regeneration
3.Glutamatergic neurons in thalamic paraventricular nucleus may be involved in the regulation of abnormal sleep behavior of Shank3 gene knockout mice.
Chang-Feng CHEN ; Lie-Cheng WANG ; Yong LIU ; Lei CHEN
Acta Physiologica Sinica 2025;77(5):792-800
The purpose of this study was to investigate the anxiety-like behaviors, circadian rhythms and sleep, and to elucidate the possible underlying mechanisms of the abnormal sleep behavior in Shank3 gene knockout (Shank3-KO) mice. The anxiety-like behaviors were detected by elevated plus-maze (EPM) test, open field test (OFT) and tail suspension test (TST). The circadian rhythms were detected by running wheel test. The electroencephalogram (EEG)/electromyogram (EMG) recordings were performed synchronically by polysomnograph. The distribution of SHANK3 in anterior cingulate cortex (ACC), paraventricular thalamus (PVT), nucleus accumbens (NAc), basolateral amygdala (BLA) and hippocampal CA2 region in wild type (WT) mice was detected by immunofluorescence assay. The protein expression of c-Fos in PVT, ACC and NAc was also detected by immunofluorescence assay during light cycle. The colocalization of c-Fos and vesicular glutamate transporter 2 (Vglut2, a marker for glutamatergic neurons) in the PVT was detected by immunofluorescence double labeling experiment. The results of EPM test showed that, compared with the WT mice, the Shank3-KO mice showed less time in open arms and less number of open arm entries. The results of OFT showed that the Shank3-KO mice showed less time in central area and less number of central area entries. The immobility time of Shank3-KO mice was increased in the TST. The results of running wheel rhythm test showed that the phase shift time of Shank3-KO mice in the continuous dark period was increased. The results of EEG/EMG recording showed that, compared with the WT mice, the duration of wakefulness in Shank3-KO mice was increased and the duration of non-rapid eye movement (NREM) sleep was decreased during light phase; The bout number of wakefulness was increased, the bout number of NREM sleep was decreased, NREM-wake transitions were increased, and wake-NREM transitions were decreased during light phase. SHANK3 was expressed in ACC, PVT, NAc and BLA in the WT mice. The expression of c-Fos in the PVT of Shank3-KO mice was up-regulated 2 h after entering the light phase, and majority of c-Fos was co-localized with Vglut2. These results suggest that the anxiety level of Shank3-KO mice is increased, the regulation of the internal rhythms is decreased, and the bout number of wakefulness is increased during light phase. The glutamatergic neurons in PVT may be involved in the regulation of abnormal sleep behavior in Shank3-KO mice during the light phase.
Animals
;
Mice, Knockout
;
Mice
;
Neurons/metabolism*
;
Nerve Tissue Proteins/physiology*
;
Male
;
Midline Thalamic Nuclei/cytology*
;
Circadian Rhythm/physiology*
;
Sleep/physiology*
;
Anxiety/physiopathology*
;
Proto-Oncogene Proteins c-fos/metabolism*
;
Vesicular Glutamate Transport Protein 2/metabolism*
;
Mice, Inbred C57BL
;
Microfilament Proteins
4.The MAP1 family: a new perspective for exploring unknown functions.
Qing WANG ; Mei LIU ; Zhang-Ji DONG
Acta Physiologica Sinica 2025;77(5):876-892
As an important part of the cytoskeleton, microtubules play a crucial role in many cellular processes, such as cell division, intracellular transport, and maintaining cell morphology. The MAP1 family is an important family of microtubule-associated proteins, which includes three members: MAP1A, MAP1B, and MAP1S. These proteins are widely involved in the dynamic regulation of the cytoskeleton and play a key role in the development and function of the central nervous system, especially in the development and function of neurons. This study reviews the research progress of the MAP1 family, mainly focusing on the structure and function of MAP1 family members, and paying particular attention to their roles in neuronal development and regeneration, regulatory mechanisms, and neurodegenerative diseases.
Humans
;
Animals
;
Microtubule-Associated Proteins/classification*
;
Neurons/cytology*
;
Neurodegenerative Diseases/physiopathology*
;
Microtubules/physiology*
;
Cytoskeleton/physiology*
5.Effect and mechanism of combined use of active components of Buyang Huanwu Decoction in ameliorating neuronal injury induced by OGD/R.
Cun-Yan DAN ; Meng-Wei RONG ; Xiu LOU ; Tian-Qing XIA ; Bao-Guo XIAO ; Hong GUO ; Cun-Gen MA ; Li-Juan SONG
China Journal of Chinese Materia Medica 2025;50(4):1098-1110
Buyang Huanwu Decoction(BYHWD), as one of the classic formulas in traditional Chinese medicine(TCM) for the treatment of cerebral ischemic stroke(CIS), has demonstrated definite effects in clinical practice. However, the material basis and mechanism of treatment have not been systematically elucidated. This study employed network pharmacology and molecular docking to analyze the potential targets and mechanisms of blood-and brain-penetrating active components of BYHWD in reducing cell apoptosis in CIS. Cell experiments were then carried out to validate the prediction results. In the experiments, five active components including hydroxysafflor yellow A( HSYA), tetramethylpyrazine( TMP), astragaloside Ⅳ( AS-Ⅳ), amygdalin( AMY), and paeoniflorin(PF) were selected to explore the pharmacological effects of BYHWD. HT22 cells were treated with BYHWD, and the cell counting kit-8(CCK-8) method was employed to examine the toxic and side effects of BYHWD. A cell model of oxygen-glucose deprivation/reoxygenation( OGD/R) was constructed, with apoptosis and pyroptosis as the main screening indicators. The levels of lactate dehydrogenase(LDH) and glutathione(GSH) were measured to assess the cell membrane integrity. Flow cytometry was employed to detect apoptosis, and the activities of caspase-3 and caspase-1 were measured to clarify the status of apoptosis and pyroptosis. ELISA was employed to determine the levels of interleukin(IL)-1β and IL-18 to confirm pyroptosis. HSYA and AMY were identified in this study as the active components regulating apoptosis and pyroptosis. TUNEL was employed to detect the apoptosis rate, and Western blot was employed to determine the expression levels of apoptosis-related proteins B-cell lymphoma-2(Bcl-2), Bcl-2-associated X protein(Bax), and caspase-3, which confirmed that the anti-apoptotic effect of the combined component group was superior to that of the single component groups. The molecular docking results revealed strong binding affinity of HSYA and AMY with SDF-1α and CXCR4.AMD3100, a selective antagonist of CXCR4, was then used for intervention. The results of Western blot showed alterations in the expression levels of apoptosis-associated proteins, SDF-1α, and CXCR4. In conclusion, HSYA and AMY influence cellular apoptosis by modulating the SDF-1α/CXCR4 signaling cascade.
Drugs, Chinese Herbal/chemistry*
;
Apoptosis/drug effects*
;
Animals
;
Neurons/cytology*
;
Mice
;
Molecular Docking Simulation
;
Cell Line
;
Glucose/metabolism*
;
Humans
;
Neuroprotective Agents/pharmacology*
6.Effects of Rehmanniae Radix Praeparata on striatal neuronal apoptosis in ADHD rats via Bcl-2/Bax/caspase-3 pathway.
Jing WANG ; Kang-Lin ZHU ; Xin-Qiang NI ; Wen-Hua CAI ; Yu-Ting YANG ; Jia-Qi ZHANG ; Chong ZHOU ; Mei-Jun SHI
China Journal of Chinese Materia Medica 2025;50(3):750-757
This study investigated the effects of Rehmanniae Radix Praeparata on striatal neuronal apoptosis in rats with attention deficit hyperactivity disorder(ADHD) based on the B-cell lymphoma-2(Bcl-2)/Bcl-2-associated X protein(Bax)/caspase-3 signaling pathway. Twenty-four 3-week-old male spontaneously hypertensive rats(SHR) were randomly divided into a model group, a methylphenidate group(2 mg·kg~(-1)·d~(-1)), and a Rehmanniae Radix Praeparata group(2.4 mg·kg~(-1)·d~(-1)). Age-matched male Wistar Kyoto(WKY) rats were used as the normal control group, with 8 rats in each group. The rats were administered by gavage for 28 days. Body weight and food intake were recorded for each group. The open field test and elevated plus maze test were used to assess hyperactivity and impulsive behaviors. Nissl staining was used to detect changes in striatal neurons and Nissl bodies. Terminal deoxynucleotidyl transferase dUTP nick end labeling(TUNEL) fluorescence staining was used to detect striatal cell apoptosis. Western blot was employed to detect the expression levels of Bcl-2, Bax, and caspase-3 proteins in the striatum. The results showed that compared with the model group, Rehmanniae Radix Praeparata significantly reduced the total movement distance, average movement speed, and central area residence time in the open field test, and significantly reduced the ratio of open arm entries, open arm stay time, and head dipping in the elevated plus maze test. Furthermore, it increased the number of Nissl bodies in striatal neurons, significantly downregulated the apoptosis index, significantly increased Bcl-2 protein expression and the Bcl-2/Bax ratio, and reduced Bax and caspase-3 protein expression. In conclusion, Rehmanniae Radix Praeparata can reduce hyperactivity and impulsive behaviors in ADHD rats. Its mechanism may be related to the regulation of the Bcl-2/Bax/caspase-3 signaling pathway in the striatum, enhancing the anti-apoptotic capacity of striatal neurons.
Animals
;
Male
;
Apoptosis/drug effects*
;
Rats
;
Drugs, Chinese Herbal/administration & dosage*
;
Caspase 3/genetics*
;
Proto-Oncogene Proteins c-bcl-2/genetics*
;
bcl-2-Associated X Protein/genetics*
;
Rehmannia/chemistry*
;
Attention Deficit Disorder with Hyperactivity/physiopathology*
;
Signal Transduction/drug effects*
;
Neurons/cytology*
;
Rats, Inbred SHR
;
Rats, Inbred WKY
;
Humans
;
Corpus Striatum/cytology*
;
Plant Extracts
7.Effect of repeated transcranial magnetic stimulation on excitability of glutaminergic neurons and gamma-aminobutyric neurons in mouse hippocampus.
Jiale WANG ; Chong DING ; Rui FU ; Ze ZHANG ; Junqiao ZHAO ; Haijun ZHU
Journal of Biomedical Engineering 2025;42(1):73-81
Repeated transcranial magnetic stimulation (rTMS) is one of the commonly used brain stimulation techniques. In order to investigate the effects of rTMS on the excitability of different types of neurons, this study is conducted to investigate the effects of rTMS on the cognitive function of mice and the excitability of hippocampal glutaminergic neurons and gamma-aminobutyric neurons from the perspective of electrophysiology. In this study, mice were randomly divided into glutaminergic control group, glutaminergic magnetic stimulation group, gamma-aminobutyric acid energy control group, and gamma-aminobutyric acid magnetic stimulation group. The four groups of mice were injected with adeno-associated virus to label two types of neurons and were implanted optical fiber. The stimulation groups received 14 days of stimulation and the control groups received 14 days of pseudo-stimulation. The fluorescence intensity of calcium ions in mice was recorded by optical fiber system. Behavioral experiments were conducted to explore the changes of cognitive function in mice. The patch-clamp system was used to detect the changes of neuronal action potential characteristics. The results showed that rTMS significantly improved the cognitive function of mice, increased the amplitude of calcium fluorescence of glutamergic neurons and gamma-aminobutyric neurons in the hippocampus, and enhanced the action potential related indexes of glutamergic neurons and gamma-aminobutyric neurons. The results suggest that rTMS can improve the cognitive ability of mice by enhancing the excitability of hippocampal glutaminergic neurons and gamma-aminobutyric neurons.
Animals
;
Mice
;
Hippocampus/cytology*
;
Transcranial Magnetic Stimulation
;
Neurons/physiology*
;
Male
;
Cognition/physiology*
;
gamma-Aminobutyric Acid/metabolism*
;
Action Potentials/physiology*
8.Research progress on silk fibroin-nerve guidance conduits for peripheral nerve injury repair.
Fan DONG ; Yining WANG ; Zixiang WU ; Quanchang TAN
Chinese Journal of Reparative and Reconstructive Surgery 2025;39(6):777-782
OBJECTIVE:
To review the research progress on silk fibroin (SF)-nerve guidance conduits (NGCs) for peripheral nerve injury (PNI) repair.
METHODS:
To review the recent literature on PNI and SF-NGCs, expound the concepts and treatment strategies of PNI, and summarize the construction of SF-NGCs and its application in PNI repair.
RESULTS:
Autologous nerve transplantation remains the "gold standard" for treating severe PNI. However, it's clinical applications are constrained by the limitations of limited donors and donor area damage. Natural SF exhibits good biocompatibility, low immunogenicity, and excellent physicochemical properties, making it an ideal candidate for the construction of NGCs. SF-NGCs constructed using different technologies have been found to have better biocompatibility and bioactivity. Their configurations can facilitate nerve regeneration by enhancing regenerative guidance and axonal extension. Besides, the adhesion, proliferation and differentiation of neurons and Schwann cells related to PNI repair can be effectively promote by NGCs. This accelerates the speed of nerve regeneration and improves the efficiency of repair. In addition, SF-NGCs can be used as regenerative scaffolds to provide biological templates for nerve repair.
CONCLUSION
The biodegradable natural SF has been extensively studied and demonstrated promising application prospects in the field of NGCs. It might be an effective and viable alternative to the "gold standard" for PNI treatment.
Fibroins/chemistry*
;
Peripheral Nerve Injuries/therapy*
;
Nerve Regeneration
;
Tissue Scaffolds/chemistry*
;
Humans
;
Guided Tissue Regeneration/methods*
;
Biocompatible Materials
;
Animals
;
Tissue Engineering/methods*
;
Schwann Cells/cytology*
;
Peripheral Nerves
;
Neurons/cytology*
9.Effects and mechanisms of hpcMSC transplantation in ameliorating cognitive dysfunction, neuroinflammation, and hippocampal neuronal damage in stroke mice.
Guangping HAO ; Shanyou SONG ; Mengjun LI
Chinese Journal of Cellular and Molecular Immunology 2025;41(6):514-523
Objective To investigate the effects and underlying mechanisms of human placental chorionic plate-derived mesenchymal stem cells (hpcMSCs) on cognitive dysfunction, neuroinflammation, neuronal damage and synaptic plasticity in a mouse model of stroke. Methods A mouse model of middle cerebral artery occlusion (MCAO) was adopted. The mice were randomly divided into three groups: sham operation group, MCAO group and hpcMSCs treatment group, with seven mice in each group. The hpcMSCs treatment group received hpcMSCs transplantation on the 1st, 3rd and 10th day after MCAO. One month after MCAO, the cognitive ability of the mice was evaluated by Morris water maze and Y maze behavioral tests; the morphological changes and synaptic functions of hippocampal neurons were analyzed by HE staining, Nissl staining, Golgi staining and immunofluorescence staining techniques; the density and activation status of microglia was analyzed by Fluorescent labeling method; the levels of tumor necrosis factor α (TNF-α), interleukin 1β (IL-1β) and IL-6 in brain tissue were analyzed by ELISA; the expressions of phosphorylated-mitogen-activated protein kinase kinase 1 (p-MEK1), phosphorylated-extracellular regulated protein kinase (p-ERK) and phosphorylated-cAMP-response element binding protein (p-CREB) and other proteins related to neuroprotection in the signal pathways were detected by Western blotting; and electrophysiological detection was performed using hippocampal slices in vitro. Results Compared with the MCAO group, mice in the hpcMSCs treatment group showed significant improvements, including improved cognitive ability, alleviated neuroinflammation (demonstrated by reduced microglial activation and decreased levels of inflammatory factors TNF-α, IL-1β and IL-6), and increased neuronal density with normalized morphology of neurons in the hippocampal CA1 region. The treatment group also demonstrated a significantly increased number of Nissl-positive cells and density of dendritic spines of hippocampal neurons, along with restored frequency of miniature excitatory postsynaptic potential (mEPSP). Moreover, hpcMSCs treatment significantly increased the expression levels of p-MEK1, p-ERK and p-CREB in the hippocampus. Conclusion Transplantation of hpcMSCs ameliorates cognitive dysfunction and hippocampal neuronal injury in stroke mice through the reduction of neuroinflammation, restoration of hippocampal neuronal function, promotion of synaptic plasticity and activation of the MEK/ERK/CREB signaling pathway. These findings suggest a new potential therapeutic approach for post-stroke neural repair.
Animals
;
Hippocampus/physiopathology*
;
Mice
;
Cognitive Dysfunction/etiology*
;
Mesenchymal Stem Cell Transplantation
;
Male
;
Neurons/metabolism*
;
Stroke/metabolism*
;
Humans
;
Neuroinflammatory Diseases/therapy*
;
Female
;
Cyclic AMP Response Element-Binding Protein/metabolism*
;
Disease Models, Animal
;
Mesenchymal Stem Cells/cytology*
;
Mice, Inbred C57BL
10.Effect of retinoic acid on delayed encephalopathy after acute carbon monoxide poisoning: Role of the lncRNA SNHG15/LINGO-1/BDNF/TrkB axis.
Fangling HUANG ; Su'e WANG ; Zhengrong PENG ; Xu HUANG ; Sufen BAI
Journal of Central South University(Medical Sciences) 2025;50(6):955-969
OBJECTIVES:
The neurotoxicity of carbon monoxide (CO) to the central nervous system is a key pathogenesis of delayed encephalopathy after acute carbon monoxide poisoning (DEACMP). Our previous study found that retinoic acid (RA) can suppress the neurotoxic effects of CO. This study further explores, in vivo and in vitro, the molecular mechanisms by which RA alleviates CO-induced central nervous system damage.
METHODS:
A cytotoxic model was established using the mouse hippocampal neuronal cell line HT22 and primary oligodendrocytes exposed to CO, and a DEACMP animal model was established in adult Kunming mice. Cell viability and apoptosis of hippocampal neurons and oligodendrocytes were assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and Annexin V/propidium iodide (PI) double staining. The transcriptional and protein expression of each gene was detected using real-time fluorescence quantitative PCR (RT-qPCR) and Western blotting. Long noncoding RNA (lncRNA) SNHG15 and LINGO-1 were knocked down or overexpressed to observe changes in neurons and oligodendrocytes. In DEACMP mice, SNHG15 or LINGO-1 were knocked down to assess changes in central nervous tissue and downstream protein expression.
RESULTS:
RA at 10 and 20 μmol/L significantly reversed CO-induced apoptosis of hippocampal neurons and oligodendrocytes, downregulation of SNHG15 and LINGO-1, and upregulation of brain-derived neurotrophic factor (BDNF) and tyrosine kinase receptor B (TrkB) (all P<0.05). Overexpression of SNHG15 or LINGO-1 weakened the protective effect of RA against CO-induced cytotoxicity (all P<0.05). Knockdown of SNHG15 or LINGO-1 alleviated CO-induced apoptosis of hippocampal neurons and oligodendrocytes and upregulated BDNF and TrkB expression levels (all P<0.05). Experiments in DEACMP model mice showed that knockdown of SNHG15 or LINGO-1 mitigated central nervous system injury in DEACMP (all P<0.05).
CONCLUSIONS
RA alleviates CO-induced apoptosis of hippocampal neurons and oligodendrocytes, thereby reducing central nervous system injury and exerting neuroprotective effects. LncRNA SNHG15 and LINGO-1 are key molecules mediating RA-induced inhibition of neuronal apoptosis and are associated with the BDNF/TrkB pathway. These findings provide a theoretical framework for optimizing the clinical treatment of DEACMP and lay an experimental foundation for elucidating its molecular mechanisms.
Animals
;
RNA, Long Noncoding/physiology*
;
Brain-Derived Neurotrophic Factor/genetics*
;
Carbon Monoxide Poisoning/complications*
;
Mice
;
Tretinoin/pharmacology*
;
Nerve Tissue Proteins/metabolism*
;
Membrane Proteins/metabolism*
;
Apoptosis/drug effects*
;
Hippocampus/cytology*
;
Receptor, trkB/metabolism*
;
Neurons/drug effects*
;
Male
;
Brain Diseases/etiology*
;
Oligodendroglia/drug effects*
;
Signal Transduction
;
Cell Line

Result Analysis
Print
Save
E-mail