1.Dopamine promotes formation and secretion of non-fibrillar alpha-synuclein oligomers.
He Jin LEE ; Sung Min BAEK ; Dong Hwan HO ; Ji Eun SUK ; Eun Duk CHO ; Seung Jae LEE
Experimental & Molecular Medicine 2011;43(4):216-222
Parkinson's disease (PD) is characterized by selective and progressive degeneration of dopamine (DA)-producing neurons in the substantia nigra pars compacta (SNpc) and by abnormal aggregation of alpha-synuclein. Previous studies have suggested that DA can interact with alpha-synuclein, thus modulating the aggregation process of this protein; this interaction may account for the selective vulnerability of DA neurons in patients with PD. However, the relationship between DA and alpha-synuclein, and the role in progressive degeneration of DA neurons remains elusive. We have shown that in the presence of DA, recombinant human alpha-synuclein produces non-fibrillar, SDS-resistant oligomers, while beta-sheet-rich fibril formation is inhibited. Pharmacologic elevation of the cytoplasmic DA level increased the formation of SDS-resistant oligomers in DA-producing neuronal cells. DA promoted alpha-synuclein oligomerization in intracellular vesicles, but not in the cytosol. Furthermore, elevation of DA levels increased secretion of alpha-synuclein oligomers to the extracellular space, but the secretion of monomers was not changed. DA-induced secretion of alpha-synuclein oligomers may contribute to the progressive loss of the dopaminergic neuronal population and the pronounced neuroinflammation observed in the SNpc in patients with PD.
Blotting, Western
;
Cell Line, Tumor
;
Dopamine/*metabolism
;
Humans
;
Levodopa/pharmacology
;
Neurons/*metabolism/pathology/*secretion
;
Parkinson Disease/metabolism/pathology
;
Substantia Nigra/metabolism/pathology
;
alpha-Synuclein/*biosynthesis/*secretion
2.Influence of APP(SWE) transfection on nicotinic receptors in cultured neuronal cells.
Yu AN ; Zhi TANG ; Xiao-lan QI ; Yan XIAO ; Ke-ren SHAN ; Zhi-zhong GUAN
Chinese Journal of Pathology 2010;39(1):48-51
OBJECTIVETo investigate the influence of APP(SWE) on the expression of neuronal acetylcholine receptors (nAChRs) and its relationship with Alzheimer's disease (AD).
METHODSAPP(SWE), carried the Swedish family AD double mutants, were transfected into SH-SY5Y cells and primary cultured neurons from rat brains to build a cellular model of AD. The mRNA levels of APP and nAChRs, and the protein levels of total APP, αAPPs and nAChRs in the cultured cells were measured using real-time PCR and Western blot, respectively. The numbers of α3 nAChR were determined by receptor-[³H]epibatidine binding assay.
RESULTSIncreased expressions of Swedish 670/671 APP at mRNA and protein levels, and down-regulation of αAPPs were observed in both of the cultured neuronal cells transfected with APP(SWE). A significant increase of α7 nAChR expression at protein and mRNA levels was detected in the APP(SWE) transfected SH-SY5Y cells. On the other hand, after transfection with APP(SWE), the expressions of α3 nAChR at protein and mRNA levels in SH-SY5Y cells, and α4 nAChR at mRNA level in primary cultured neurons were inhibited. In addition, the numbers of receptor binding sites were deceased in SH-SY5Y cells overexpressing with APP(SWE).
CONCLUSIONOverexpression of APP(SWE) can decrease αAPPs and modify nAChRs by increasing expression of α7 nAChR and decreasing α3 and α4 nAChRs, which might play an important role in the pathogenesis of AD.
Alzheimer Disease ; genetics ; Amyloid Precursor Protein Secretases ; secretion ; Amyloid beta-Protein Precursor ; genetics ; metabolism ; physiology ; Animals ; Brain Neoplasms ; metabolism ; pathology ; Cell Line, Tumor ; Cells, Cultured ; Cerebral Cortex ; cytology ; metabolism ; Down-Regulation ; Humans ; Neuroblastoma ; metabolism ; pathology ; Neurons ; cytology ; metabolism ; Plasmids ; RNA, Messenger ; metabolism ; Rats ; Rats, Sprague-Dawley ; Receptors, Nicotinic ; genetics ; metabolism ; Transfection ; alpha7 Nicotinic Acetylcholine Receptor
3.Protective effects of icariin on neurons injured by cerebral ischemia/reperfusion.
Li LI ; Qi-xin ZHOU ; Jing-shan SHI
Chinese Medical Journal 2005;118(19):1637-1643
BACKGROUNDIt is very important to search for novel anti-ischemia/reperfusion neuroprotective drugs for prevention or treatment of cerebrovascular diseases. Icariin, the major active component of traditional Chinese herb Yinyanghuo, may have a beneficial role for neurons in cerebral ischemia/reperfusion caused by accident. However, it was not clear yet. In this study, we observed the protective effects of icariin on neurons injured by ischemia/reperfusion in vitro and in vivo and investigated its protective mechanism.
METHODSCerebral cortical neurons of Wistar rats in primary culture were studied during the different periods of oxygen-glucose deprivation and reperfusion with oxygen and glucose. Cell viability was determined by methyl thiazoleterazolium (MTT) assay. The activity of lactate dehydrogenase (LDH) leaked from neurons, cell apoptosis and the concentration of intracellular free calcium were measured respectively. On the other hand, the mice model of transient cerebral ischemia/reperfusion was made by bilateral occlusion of common carotid arteries and ischemic hypotension/reperfusion. The mice were divided into several groups at random: sham operated group, model group and icariin preventive treatment group. The changes of mice behavioral, activities of superoxide dismutase (SOD) and the content of malondialdehyde (MDA) were measured, respectively.
RESULTSTreatment with icariin (final concentration 0.25, 0.5, and 1 mg/L) during ischemia/reperfusion-mimetic incubation in vitro concentration-dependently attenuated neuronal damage with characteristics of increasing injured neuronal absorbance of MTT, decreasing LDH release, decreasing cell apoptosis, and blunting elevation of intracellular calcium concentration. And in vivo the learning and memory abilities significantly decreased, activities of SOD were diminished and MDA level increased obviously in model group, compared with that in sham operated group. But pre-treatment of model mice with icariin (10, 30 and 100 mg/kg, i.g.) significantly blunted the decrease of mice learning, memory ability and SOD activity, and markedly decreased MDA level.
CONCLUSIONSIcariin has protective effects on cerebral ischemia/reperfusion injured neurons. And decreasing cell apoptosis, preventing intracellular calcium concentration elevation and enhancing anti-oxidant capacity may contribute to its protective effects.
Animals ; Apoptosis ; drug effects ; Brain Ischemia ; drug therapy ; Calcium ; metabolism ; Dose-Response Relationship, Drug ; Flavonoids ; pharmacology ; L-Lactate Dehydrogenase ; secretion ; Learning ; drug effects ; Male ; Malondialdehyde ; analysis ; Memory ; drug effects ; Mice ; Neurons ; pathology ; Neuroprotective Agents ; pharmacology ; Rats ; Rats, Wistar ; Reperfusion Injury ; prevention & control