1.Effect of deoxypodophyllotoxin on membrane potential of dorsal unpaired median neurons and its relationship with sodium channel.
Qin SUN ; Peng XU ; Li-Shan WANG ; Fan HU ; Jie CHENG ; Hang XIAO ; Rong GAO
Chinese Journal of Industrial Hygiene and Occupational Diseases 2010;28(10):740-743
OBJECTIVEto investigate the effect of deoxypodophyllotoxin (DOP) on membrane potential of dorsal unpaired median neurons (DUM, neurons) and its correlation with sodium channel.
METHODSDUM neurons were labeled with DiBAC4(3). Laser scanning confocal microscope was used to monitor the changes of membrane potential at real time on these neurons that were treated with different concentrations of the DOP. The effect of sodium channel blocker tetrodotoxin (TTX) on the changes was also observed.
RESULTSmembrane potential depolarization induced by the DOP peaked at 5 min and became stabilized after 8min. After compared with fluorescence intensity without treatment, the normalized fluorescence intensity was 69.6 ± 3.0, 72.1 ± 2.7, 77.8 ± 3.6, 86.2 ± 3.1 in cells which were treated with 1, 5, 25, 125 micromol/L DOP, respectively. These numbers were significantly lower than those from untreated control cells (P < 0.01). When DUM neurons were co-incubated with 1 micromol/L TTX for 20 min, then treated with 25 micromol/L DOP, the intensity changed to 63.6 ± 5.4, which was similar to that of the control (P > 0.05). This indicated that the effect of DOP could be completely inhibited by TTX.
CONCLUSIONDOP induced membrane depolarization of DUM neurons in the range of 1 approximately 125 micromol/L and the sodium channel should be involved in this process.
Animals ; Cells, Cultured ; Ganglia, Invertebrate ; drug effects ; physiology ; Membrane Potentials ; drug effects ; physiology ; Neurons ; drug effects ; physiology ; Periplaneta ; drug effects ; physiology ; Podophyllotoxin ; analogs & derivatives ; pharmacology ; Sodium Channels ; metabolism
2.Effect of lead-exposed astrocytes on neuronal synaptic formation.
Yan CUI ; Tingting LI ; Haiyang YU ; Yingjun LIAO ; Yaping JIN
Chinese Journal of Industrial Hygiene and Occupational Diseases 2014;32(9):641-647
OBJECTIVETo investigate the effect of lead-exposed astrocyte conditioned medium (ACM) on the synaptic formation of neurons and to provide reference for the mechanism of lead neurotoxicity.
METHODSAstrocytes were cultured in the medium containing 50, 100, 200, 400, and 800 µmol/L lead acetate for 72 h. Alamar Blue was used to assess the cell viability of astrocytes, and then ACM was collected. Primarily cultured neurons were divided into six groups: pure culture group, non-glutamic acid (Glu)-induced ACM treatment group, Glu-induced lead-free ACM treatment group, and Glu-induced 50, 100, and 200 µmol/L lead acetate-exposed ACM treatment groups. Neurons were collected after being cultured in ACM for 24, 48, or 72 h. The content of synaptophysin (SYP) in neurons was determined by Western blot. The SYP expression in neurons was measured by immunofluorescence after being cultured in ACMfor 72 h.
RESULTSIn all lead-exposed groups, the cell viability of astrocytes declined with increasing concentration of lead (P < 0.05). The Western blot showed that compared with the pure culture group, the non-Glu-induced ACM treatment group and Glu-induced lead- free ACM treatment group had significantly increased content of SYP in neurons (P < 0.01); compared with the non-Glu-induced ACM treatment group, the Glu-induced ACM treatment groups had significantly reduced SYP expression in neurons (P < 0.05); compared with the Glu-induced lead-free ACM treatment group, all lead-exposed ACM treatment groups had the content of SYP in neurons significantly reduced with increasing concentration of lead after 72-h culture (P < 0.01), the 200 µmol/L lead-exposed ACM treatment group had significantly reduced content of SYP in neurons after 48-h culture (P < 0.01), and all lead-exposed ACM treatment groups showed no significant changes in the content of SYP in neurons after 24-h culture. Double-labeling immunofluorescence of SYP showed that all lead-exposed ACM treatment groups had a significant decrease in the number of SYP-fluorescent particles after 72-h culture (P < 0.05).
CONCLUSIONAstrocytes promote synaptic formation of neurons, which may be inhibited during lead exposure.
Astrocytes ; drug effects ; physiology ; Cell Survival ; drug effects ; Cells, Cultured ; Culture Media, Conditioned ; metabolism ; Glutamic Acid ; metabolism ; Lead ; toxicity ; Neurons ; drug effects ; Synapses ; drug effects ; physiology
3.Cystatin C Induces Insulin Resistance in Hippocampal Neurons and Promotes Cognitive Dysfunction in Rodents.
Lan LUO ; Jinyu MA ; Yue LI ; Zongkang HU ; Chengfeng JIANG ; Hao CAI ; Cheng SUN
Neuroscience Bulletin 2018;34(3):543-545
Animals
;
Cognitive Dysfunction
;
metabolism
;
Cystatin C
;
pharmacology
;
Hippocampus
;
drug effects
;
Insulin Resistance
;
physiology
;
Neurons
;
drug effects
;
Rats
;
Rodentia
4.Lipid peroxidation injury and endoplasmic reticulum stress in Al-induced apoptosis.
Qin-li ZHANG ; Fang WANG ; Ying-tao SHI ; Lin-ping WANG ; Ling ZHANG ; Hong-mei ZHANG ; Jing WANG ; Qiu-ying LI ; Qiao NIU
Chinese Journal of Industrial Hygiene and Occupational Diseases 2008;26(3):143-146
OBJECTIVETo study the role of lipid peroxidation injury and endoplasmic reticulum stress in Al-induced apoptosis.
METHODSNeurons from 0-3 day rats were cultured and treated with different concentrations of AlCl3.6H2O. Morphologic changes of neurons and endoplasmic reticulum were observed under fluorescent and transmission electron microscope; activities of superoxide dismutase (SOD), malondialdehyde (MDA) and ATP enzymes were detected.
RESULTSTypical morphologic changes in neurons apoptosis and endoplasmic reticulum were found under fluorescent and transmission electron microscope; SOD enzyme viability and ATP enzyme viability were significantly increased in the low-dosage group, but reduced in mid and high-dosage group (P < 0.01), whereas MDA levels decreased in the low-dosage group, but increased in mid and high-dosage group (P < 0.01).
CONCLUSIONAluminum may induce neurons apoptosis, and lipid peroxidation injury in endoplasmic reticulum plays an important role in the apoptosis progression.
Aluminum ; toxicity ; Animals ; Apoptosis ; drug effects ; Cells, Cultured ; Endoplasmic Reticulum Stress ; physiology ; Lipid Peroxidation ; physiology ; Neurons ; drug effects ; metabolism ; pathology ; Rats ; Rats, Sprague-Dawley
5.Effects of intracarotid injection of 17beta-estradiol on electrical activity of rostral ventrolateral medullary neurons in male rats.
Acta Physiologica Sinica 2002;54(1):47-54
The purpose of this study was to determine the effects of 17beta-estradiol (E(2)) on electrical activity of the rostral ventrolateral medulla (RVLM) neurons in rats. Male Sprague-Dawley rats were anesthetized with urethane (1.0 g/kg) and subjected to sino-aortic denervation. Blood pressure, heart rate and spontaneous discharge of RVLM neurons were recorded simultaneously. Intracarotid injection of E(2) (10 ng/kg) decreased the discharge rate from 14.46+/-0.47 to 9.73+/-0.33 spikes/s (P<0.001) in 25 out of 30 RVLM neurons, while blood pressure and heart rate showed no significant change. The inhibitory effect of E(2) on RVLM neuronal activity was rapid at the onset (within 1 min) and long-lasting (>5 min). Prior administration of antiestrogen tamoxifen (TAM) did not affect the effect of E(2). However, pretreatment with N( )-nitro-L-arginine-methyl ester (L-NAME), an inhibitor of nitric oxide (NO) synthase, significantly attenuated the inhibitory effect of E(2). In addition, NO donor 3-morpholinosydnonimine (SIN-1) potentiated the effect of E(2). These results suggest that E(2) may inhibit spontaneous electrical activity of RVLM neurons, an effect which is mediated by the activation of NOS with the resultant of NO release via nongenomic actions.
Animals
;
Carotid Arteries
;
Electrophysiology
;
Estradiol
;
pharmacology
;
Injections, Intra-Arterial
;
Male
;
Medulla Oblongata
;
cytology
;
drug effects
;
physiology
;
Neurons
;
drug effects
;
physiology
;
Nitric Oxide
;
metabolism
;
Rats
;
Rats, Sprague-Dawley
6.Modulation of gamma-aminobutyric acid receptor on medial vestibular nucleus neurons in vivo.
Chinese Journal of Otorhinolaryngology Head and Neck Surgery 2005;40(11):830-834
OBJECTIVETo investigate modulation of gamma-aminobutyric acid (GABA) and its receptors on medial vestibular nucleus neurons in vivo.
METHODSTwenty-six male Wistar rats were used. gamma-aminobutyric acid, bicuculline (BIC, gamma-aminobutyric acid A receptor antagonist) and 2-hydroxysaclofen (SAC, gamma-aminobutyric acid B receptor antagonist) were microiontophoresed on medial vestibular nucleus (MVN) neurons to determine the effects of gamma-aminobutyric acid and its antagonists on the neuronal firing rates of medial vestibular nucleus in rats in vivo.
RESULTSMicroiontophoretic application of y-aminobutyric acid at 10, 30, 50 nA electric current produced inhibitory responses on 42 MVN neurons, these responses were dose-dependent decreases, firing rates (x +/- s) of MVN neurons decreased form (14.8 +/- 5.6) times/s to (8.7 +/- 3.4) times/s, (4.1 +/- 1.6) times/s and (2.2 +/- 1.1) times/s respectively; microiontophoretic application of bicuculline in 37 MVN neurons, 86.5% (32/37) neurons produced excitatory responses, 13.5% (5/37) neurons didn't response, firing rates of MVN neurons increased form (15.3 +/- 6.3) times/s to (16.8 +/- 7.1) times/s, (25.9 +/- 10.1) times/s and (32.7 +/- 11.3) times/s respectively at 10, 30, 50 nA electric current, which were dose-dependent increases, and the inhibitory responses of gamma-aminobutyric acid on MVN neurons were blocked by bicuculline completely; however, microiontophoretic application of 2-hydroxysaclofen didn't produced responses as bicuculline did.
CONCLUSIONSModulation of gamma-aminobutyric acid on medial vestibular nucleus neurons was mediated by y-aminobutyric acid A receptor in vivo.
Animals ; Electrophysiology ; Male ; Neurons ; drug effects ; physiology ; Rats ; Rats, Wistar ; Receptors, GABA ; metabolism ; Vestibular Nuclei ; cytology ; drug effects ; physiology ; gamma-Aminobutyric Acid ; pharmacology
7.The effect of niflumic acid on gamma aminobutyric acid activated current in DRG neurons.
Li LI ; Jing LI ; Ke-Tao MA ; Hong-Ju CHENG ; Lei ZHAO ; Yang WANG ; Jun-Qiang SI
Chinese Journal of Applied Physiology 2013;29(1):68-71
OBJECTIVETo explore the modulatory effect of niflumic acid (NFA) on gamma aminobutyric acid (GABA)-activated currents of dorsal root ganglion (DRG) neurons in rat.
METHODSThe whole-cell patch-clamp technique was used to record the NFA- and GABA-activated currents in neurons freshly dissociated from rat DRG neurons.
RESULTSApplication of NFA(0.1 - 100 micromol/L) could induce concentration-dependent outward currents in some cells (21/48,43.75%), and GABA (0.1 - 100 micromol/L) could induce concentration-dependent inward currents in some cells(150/159,94.32%). NFA-(100 micromol/L) and GABA-(100 micromol/L) activated currents were (0.27 +/- 0.06) nA (n = 12) and (1.29 +/- 0.72) nA (n = 53) respectively. However, pre-application of NFA (0.1 - 100 micromol/L) could inhibit the GABA-activated inward current which was identified to be GABAA receptor-mediated current. The inhibitory effects of NFA were concentration-dependent. NFA could not alter the EC50 (about 30 micromol/L) and inverse potential (about -10 mV) of GABA-activated current (P > 0.05).
CONCLUSIONPre-application of NFA exerts a more strong inhibitory effect on the peak value of GABA-activated current.
Animals ; Cell Separation ; Cells, Cultured ; Ganglia, Spinal ; drug effects ; physiology ; Neurons ; drug effects ; physiology ; Niflumic Acid ; pharmacology ; Patch-Clamp Techniques ; Rats ; Rats, Sprague-Dawley ; gamma-Aminobutyric Acid ; metabolism
8.Microinjection of M(5) muscarinic receptor antisense oligonucleotide into VTA inhibits FosB expression in the NAc and the hippocampus of heroin sensitized rats.
Hui-Fen LIU ; Wen-Hua ZHOU ; Hua-Qiang ZHU ; Miao-Jun LAI ; Wei-Sheng CHEN
Neuroscience Bulletin 2007;23(1):1-8
OBJECTIVETo investigate the effect of M(5) muscarinic receptor subtype on the locomotor sensitization induced by heroin priming, and it's effect on the FosB expression in the nucleus accumbens (NAc) and the hippocampus in the heroin sensitized rats.
METHODSLocomotor activity was measured every 10 min for 1 h after subcutaneous injection of heroin. FosB expression was assayed by immunohistochemistry, and the antisense oligonucleotides (AS-ONs) targeting M(5) muscarinic receptor was transferred with the lipofectin.
RESULTSMicroinjection of AS-ONs targeting M(5) muscarinic receptor in the ventral tegmental area (VTA) blocked the expression of behavioral sensitization induced by heroin priming in rats. Meanwhile, the expression of FosB-positive neurons in either the NAc or the dentate gyrus (DG) of the hippocampus increased in heroin-induced locomotor sensitized rats. The enhancement of FosB-positive neurons in the NAc or DG could be inhibited by microinjection of M(5) muscarinic receptor AS-ONs into the VTA before the heroin-induced locomotor sensitization was performed. In contrast, microinjection of M(5) muscarinic receptor sense oligonucleotide (S-ONs) into the VTA did not block the expression of behavioral sensitization or the expression of FosB in the NAc or DG in the heroin sensitized rats.
CONCLUSIONBlocking M(5) muscarinic receptor in the VTA inhibits the expression of heroin-induced locomotor sensitization, which is associated with the regulation of FosB expression in the NAc and hippocampus neurons. M(5) muscarinic receptor may be a useful pharmacological target for the treatment of heroin addiction.
Acetylcholine ; metabolism ; Animals ; Brain ; drug effects ; metabolism ; physiopathology ; Heroin ; adverse effects ; Heroin Dependence ; drug therapy ; metabolism ; physiopathology ; Hippocampus ; drug effects ; metabolism ; Immunohistochemistry ; Male ; Microinjections ; Motor Activity ; drug effects ; physiology ; Narcotics ; adverse effects ; Neural Pathways ; drug effects ; metabolism ; physiopathology ; Neurons ; drug effects ; metabolism ; Nucleus Accumbens ; drug effects ; metabolism ; physiopathology ; Oligonucleotides, Antisense ; pharmacology ; Proto-Oncogene Proteins c-fos ; drug effects ; metabolism ; Rats ; Rats, Sprague-Dawley ; Receptor, Muscarinic M5 ; antagonists & inhibitors ; genetics ; metabolism ; Synaptic Transmission ; drug effects ; physiology ; Ventral Tegmental Area ; drug effects ; metabolism ; physiopathology
9.Calcium overload is essential for the acceleration of staurosporine-induced cell death following neuronal differentiation in PC12 cells.
Experimental & Molecular Medicine 2009;41(4):269-276
Differentiation of neuronal cells has been shown to accelerate stress-induced cell death, but the underlying mechanisms are not completely understood. Here, we find that early and sustained increase in cytosolic ([Ca2+]c) and mitochondrial Ca2+ levels ([Ca2+]m) is essential for the increased sensitivity to staurosporine-induced cell death following neuronal differentiation in PC12 cells. Consistently, pretreatment of differentiated PC12 cells with the intracellular Ca2+-chelator EGTA-AM diminished staurosporine-induced PARP cleavage and cell death. Furthermore, Ca2+ overload and enhanced vulnerability to staurosporine in differentiated cells were prevented by Bcl-XL overexpression. Our data reveal a new regulatory role for differentiation-dependent alteration of Ca2+ signaling in cell death in response to staurosporine.
Animals
;
Calcium/*metabolism
;
Caspase 3/metabolism
;
Cell Differentiation/*physiology
;
DNA Fragmentation
;
Mitochondria/metabolism
;
*Neurons/cytology/drug effects/physiology
;
*PC12 Cells/cytology/drug effects/physiology
;
Rats
;
Staurosporine/*pharmacology
;
bcl-X Protein/metabolism
10.Forskolin and 8-cyclopentyltheophylline synergistically facilitate the neuronal activity in the CA2 area of rat hippocampus via cAMP and non-cAMP cascades.
Jie ZHANG ; Yuko SEKINO ; Xian-Hou YUAN
Acta Physiologica Sinica 2006;58(5):435-441
High level of adenosine A1 receptor-like immunoreactivity has been found in the CA2/CA3a region of adult rat hippocampus, but its roles in the neuronal activity or signal propagation in hippocampus and its intracellular cascade remain to be studied. In this study, we examined the relation between adenosine-3',5'-cyclic monophosphate (cAMP) cascade and suppression of synaptic transmission by endogenous adenosine through adenosine A1 receptor in the CA2 area. In transverse hippocampal slice, maximal electrical stimulation of the hilus region (0.6 mA) only evoked small population spikes (PSs) in the CA2 area (0.5 mV). In the presence of forskolin (20 micromol/L), a direct adenylate cyclase activator, PSs in CA2 were increased to 1.1 mV. When 8-cyclopentyltheophylline (8CPT, 2 micromol/L), an adenosine A1 receptor antagonist, was added in the presence of 20 micromol/L forskolin, PSs with an average amplitude of 4.7 mV were recorded in the CA2 area, much higher than the sum of the amplitude of PSs in the presence of forskolin and 8CPT alone. To test whether this synergistic potentiation results from the additive activation of cAMP cascade, the cAMP content in hippocampal slices was measured with enzyme immunoassay (EIA). Results showed that 8CPT did not increase the cAMP content in CA2 with or without forskolin. Co-application of forskolin and Ro 20-1724, a cAMP-specific phosphodiesterase-IV inhibitor, only increased PSs in CA2 to 1.3 mV but increased cAMP content by 4.4 times. On the other hand, co-application of 8CPT and 1, 9-dideoxyforskolin, a forskolin analog which has no effect on adenylate cyclase, did not mimic the synergistic effect of 8CPT and forskolin on PSs in CA2. These results indicate that up-regulation of adenylate cyclase activity and inhibition of adenosine A1 receptor activity synergistically facilitate the neuronal activity in the CA2 area and the effect of adenosine A1 receptor antagonist is via non-cAMP cascade. These data also suggest that acting on adenosine A1 receptors, endogenous and extragenous adenosine/adenosine A1 agonist(s) inhibit neuronal activity through different pathways.
Adenosine A1 Receptor Antagonists
;
Adenylyl Cyclases
;
metabolism
;
Animals
;
Colforsin
;
pharmacology
;
Cyclic AMP
;
physiology
;
Drug Synergism
;
Hippocampus
;
drug effects
;
physiology
;
Long-Term Potentiation
;
drug effects
;
Male
;
Neurons
;
drug effects
;
physiology
;
Rats
;
Rats, Wistar
;
Theophylline
;
analogs & derivatives
;
pharmacology