1.Different sensitivities to rocuronium of the neuromuscular junctions innervated by normal/damaged facial nerves and somatic nerve in rats: the role of the presynaptic acetylcholine quantal release.
Jun-Liang CHEN ; Shao-Qin LI ; Fang-Lu CHI ; Lian-Hua CHEN ; Shi-Tong LI
Chinese Medical Journal 2012;125(10):1747-1752
BACKGROUNDMuscles present different responses to muscle relaxants, a mechanism of importance in surgeries requiring facial nerve evoked electromyography under general anaesthesia. The non-depolarizing muscle relaxants have multiple reaction formats in the neuromuscular junction, in which pre-synaptic quantal release of acetylcholine was one of the important mechanisms. This study was to compare the pre-synaptic quantal release of acetylcholine from the neuromuscular junctions innervated by normal/damaged facial nerves and somatic nerve under the effect of rocuronium in rats in vitro.
METHODSAcute right-sided facial nerve injury was induced by nerve crush axotomies. Both sided facial nerve connected orbicularis oris strips and tibial nerve connected gastrocnemius strips were isolated to measure endplate potentials (EPP) and miniature endplate potentials (MEPP) using an intracellular microelectrode gauge under different rocuronium concentrations. Then, the pre-synaptic quantal releases of acetylcholine were calculated by the ratios of the EPPs and the MEPPs, and compared among the damaged or normal facial nerve innervated orbicularis oris and tibial nerve innervated gastrocnemius.
RESULTSThe EPP/MEPP ratios of the three neuromuscular junctions decreased in a dose dependent manner with the increase of the rocuronium concentration. With the concentrations of rocuronium being 5 µg/ml, 7.5 µg/ml and 10 µg/ml, the decrease of the EPP/MEPP ratio in the damaged facial nerve group was greater than that in the normal facial nerve group. The decrease in the somatic nerve group was the biggest, with significant differences.
CONCLUSIONSRocuronium presented different levels of inhibition on the pre-synaptic quantal release of acetylcholine in the three groups of neuromuscular junctions. The levels of the inhibition showed the following sequence: somatic nerve > damaged facial nerve > normal facial nerve. The difference may be one of the reasons causing the different sensitivities to rocuronium among the muscles innervated by the normal/injured facial nerves and the somatic nerve. The results may provide some information for the proper usage of muscle relaxants in surgeries requiring electromyographic monitoring for the pre-surgically impaired facial nerves.
Acetylcholine ; metabolism ; Androstanols ; pharmacology ; Animals ; Facial Nerve ; drug effects ; metabolism ; Male ; Neuromuscular Junction ; drug effects ; metabolism ; Rats ; Rats, Sprague-Dawley
2.Sepsis Strengthens Antagonistic Actions of Neostigmine on Rocuronium in a Rat Model of Cecal Ligation and Puncture.
Jin WU ; Tian JIN ; Hong WANG ; Shi-Tong LI
Chinese Medical Journal 2016;129(12):1477-1482
BACKGROUNDThe antagonistic actions of anticholinesterase drugs on non-depolarizing muscle relaxants are theoretically related to the activity of acetylcholinesterase (AChE) in the neuromuscular junction (NMJ). However, till date the changes of AChE activity in the NMJ during sepsis have not been directly investigated. We aimed to investigate the effects of sepsis on the antagonistic actions of neostigmine on rocuronium (Roc) and the underlying changes of AChE activity in the NMJ in a rat model of cecal ligation and puncture (CLP).
METHODSA total of 28 male adult Sprague-Dawley rats were randomized to undergo a sham surgery (the sham group, n = 12) or CLP (the septic group, n = 16). After 24 h, the time-response curves of the antagonistic actions of 0.1 or 0.5 μmol/L of neostigmine on Roc (10 μmol/L)-depressed diaphragm twitch tension were measured. Meanwhile, the activity of AChE in the NMJ was detected using a modified Karnovsky and Roots method. The mRNA levels of the primary transcript and the type T transcript of AChE (AChET) in the diaphragm were determined by real-time reverse transcription-polymerase chain reaction.
RESULTSFour of 16 rats in the septic group died within 24 h. The time-response curves of both two concentrations of neostigmine in the septic group showed significant upward shifts from those in the sham group (P < 0.001 for 0.1 μmol/L; P = 0.009 for 0.5 μmol/L). Meanwhile, the average optical density of AChE in the NMJ in the septic group was significantly lower than that in the sham group (0.517 ± 0.045 vs. 1.047 ± 0.087, P < 0.001). The AChE and AChETmRNA expression levels in the septic group were significantly lower than those in the sham group (P = 0.002 for AChE; P = 0.001 for AChET).
CONCLUSIONSSepsis strengthened the antagonistic actions of neostigmine on Roc-depressed twitch tension of the diaphragm by inhibiting the activity of AChE in the NMJ. The reduced content of AChE might be one of the possible causes of the decreased AChE activity in the NMJ.
Acetylcholinesterase ; metabolism ; Androstanols ; pharmacology ; Animals ; Cecum ; injuries ; Cholinesterase Inhibitors ; pharmacology ; Diaphragm ; drug effects ; metabolism ; Disease Models, Animal ; Ligation ; Male ; Neostigmine ; pharmacology ; Neuromuscular Junction ; enzymology ; Neuromuscular Nondepolarizing Agents ; pharmacology ; Punctures ; Random Allocation ; Rats ; Rats, Sprague-Dawley ; Sepsis ; physiopathology
3.Alteration of nitrergic neuromuscular transmission as a result of acute experimental colitis in rat.
Tae Sik SUNG ; Jun Ho LA ; Tae Wan KIM ; Il Suk YANG
Journal of Veterinary Science 2006;7(2):143-150
Nitric oxide (NO) is a non-adrenergic, non-cholinergic neurotransmitter found in the enteric nervous system that plays a role in a variety of enteropathies, including inflammatory bowel disease. Alteration of nitrergic neurons has been reported to be dependent on the manner by which inflammation is caused. However, this observed alteration has not been reported with acetic acid-induced colitis. Therefore, the purpose of the current study was to investigate changes in nitrergic neuromuscular transmission in experimental colitis in a rat model. Distal colitis was induced by intracolonic administration of 4% acetic acid in the rat. Animals were sacrificed at 4 h and 48 h postacetic acid treatment. Myeloperoxidase activity was significantly increased in the acetic acid-treated groups. However, the response to 60 mM KCl was not significantly different in the three groups studied. The amplitude of phasic contractions was increased by Nomega-nitro-L-arginine methyl ester (L-NAME) in the normal control group, but not in the acetic acid-treated groups. Spontaneous contractions disappeared during electrical field stimulation (EFS) in normal group. However, for the colitis groups, these contractions initially disappeared, and then reappeared during EFS. Moreover, the observed disappearance was diminished by L-NAME; this suggests that these responses were NO-mediated. In addition, the number of NADPH-diaphorase positive nerve cell bodies, in the myenteric plexus, was not altered in the distal colon; whereas the area of NADPH-diaphorase positive fibers, in the circular muscle layer, was decreased in the acetic acidtreated groups. These results suggest that NO-mediated inhibitory neural input, to the circular muscle, was decreased in the acetic acid-treated groups.
Acetic Acid/toxicity
;
Animals
;
Colitis/chemically induced/*pathology/*physiopathology
;
Colon/drug effects/enzymology/*innervation/pathology
;
Indicators and Reagents/toxicity
;
Male
;
Muscle Contraction/drug effects
;
Muscle, Smooth/drug effects/metabolism
;
Myenteric Plexus/pathology
;
NADPH Dehydrogenase/metabolism
;
NG-Nitroarginine Methyl Ester/pharmacology
;
Neuromuscular Junction/drug effects/*metabolism
;
Nitrergic Neurons/drug effects/*metabolism
;
Nitric Oxide/*metabolism
;
Peroxidase/metabolism
;
Potassium Chloride/pharmacology
;
Rats
;
Rats, Sprague-Dawley