2.The triggering receptor expressed on myeloid cells 2-apolipoprotein E signaling pathway in diseases.
Shukai LYU ; Zhuoqing LAN ; Caixia LI
Chinese Medical Journal 2023;136(11):1291-1299
Triggering receptor expressed on myeloid cells 2 (TREM2) is a membrane receptor on myeloid cells and plays an important role in the body's immune defense. Recently, TREM2 has received extensive attention from researchers, and its activity has been found in Alzheimer's disease, neuroinflammation, and traumatic brain injury. The appearance of TREM2 is usually accompanied by changes in apolipoprotein E (ApoE), and there has been a lot of research into their structure, as well as the interaction mode and signal pathways involved in them. As two molecules with broad and important roles in the human body, understanding their correlation may provide therapeutic targets for certain diseases. In this article, we reviewed several diseases in which TREM2 and ApoE are synergistically involved in the development. We further discussed the positive or negative effects of the TREM2-ApoE pathway on nervous system immunity and inflammation.
Humans
;
Alzheimer Disease/metabolism*
;
Apolipoproteins E/genetics*
;
Microglia/metabolism*
;
Myeloid Cells/metabolism*
;
Signal Transduction
;
Neuroinflammatory Diseases
3.CX3C-chemokine receptor 1 modulates cognitive dysfunction induced by sleep deprivation.
Jiawei XIN ; Chao WANG ; Xiaojuan CHENG ; Changfu XIE ; Qiuyang ZHANG ; Yilang KE ; Xuanyu HUANG ; Xiaochun CHEN ; Xiaodong PAN
Chinese Medical Journal 2021;135(2):205-215
BACKGROUND:
Microglia plays an indispensable role in the pathological process of sleep deprivation (SD). Here, the potential role of microglial CX3C-chemokine receptor 1 (CX3CR1) in modulating the cognition decline during SD was evaluated in terms of microglial neuroinflammation and synaptic pruning. In this study, we aimed to investigat whether the interference in the microglial function by the CX3CR1 knockout affects the CNS's response to SD.
METHODS:
Middle-aged wild-type (WT) C57BL/6 and CX3CR1-/- mice were either subjected to SD or allowed normal sleep (S) for 8 h to mimic the pathophysiological changes of middle-aged people after staying up all night. After which, behavioral and histological tests were used to explore their different changes.
RESULTS:
CX3CR1 deficiency prevented SD-induced cognitive impairments, unlike WT groups. Compared with the CX3CR1-/- S group, the CX3CR1-/- SD mice reported a markedly decreased microglia and cellular oncogene fos density in the dentate gyrus (DG), decreased expression of pro-inflammatory cytokines, and decreased microglial phagocytosis-related factors, whereas increased levels of anti-inflammatory cytokines in the hippocampus and a significant increase in the density of spines of the DG were also noted.
CONCLUSIONS
These findings suggest that CX3CR1 deficiency leads to different cerebral behaviors and responses to SD. The inflammation-attenuating activity and the related modification of synaptic pruning are possible mechanism candidates, which indicate CX3CR1 as a candidate therapeutic target for the prevention of the sleep loss-induced cognitive impairments.
Animals
;
Cognitive Dysfunction
;
Mice
;
Mice, Inbred C57BL
;
Microglia
;
Neuroinflammatory Diseases
;
Sleep Deprivation
4.Minocycline Activates the Nucleus of the Solitary Tract-Associated Network to Alleviate Lipopolysaccharide-Induced Neuroinflammation.
Jian-Bo XIU ; Lan-Lan LI ; Qi XU
Chinese Medical Sciences Journal 2022;37(1):1-14
Objective To examine the neuroanatomical substrates underlying the effects of minocycline in alleviating lipopolysaccharide (LPS)-induced neuroinflammation. Methods Forty C57BL/6 male mice were randomly and equally divided into eight groups. Over three conse-cutive days, saline was administered to four groups of mice and minocycline to the other four groups. Immediately after the administration of saline or minocycline on the third day, two groups of mice were additionally injected with saline and the other two groups were injected with LPS. Six or 24 hours after the last injection, mice were sacrificed and the brains were removed. Immunohistochemical staining across the whole brain was performed to detect microglia activation via Iba1 and neuronal activation via c-Fos. Morphology of microglia and the number of c-Fo-positive neurons were analyzed by Image-Pro Premier 3D. One-way ANOVA and Fisher's least-significant differences were employed for statistical analyses. Results Minocycline alleviated LPS-induced neuroinflammation as evidenced by reduced activation of microglia in multiple brain regions, including the shell part of the nucleus accumbens (Acbs), paraventricular nucleus (PVN) of the hypothalamus, central nucleus of the amygdala (CeA), locus coeruleus (LC), and nucleus tractus solitarius (NTS). Minocycline significantly increased the number of c-Fo-positive neurons in NTS and area postrema (AP) after LPS treatment. Furthermore, in NTS-associated brain areas, including LC, lateral parabrachial nucleus (LPB), periaqueductal gray (PAG), dorsal raphe nucleus (DR), amygdala, PVN, and bed nucleus of the stria terminali (BNST), minocycline also significantly increased the number of c-Fo-positive neurons after LPS administration. Conclusion Minocycline alleviates LPS-induced neuroinflammation in multiple brain regions, possibly due to increased activation of neurons in the NTS-associated network.
Animals
;
Female
;
Lipopolysaccharides/toxicity*
;
Male
;
Mice
;
Mice, Inbred C57BL
;
Minocycline/pharmacology*
;
Neuroinflammatory Diseases
;
Solitary Nucleus
5.Mechanism of stress-induced microglial activation in depression and traditional Chinese medicine regulation.
Yi-Ze SUN ; Hai-Bin ZHAO ; Zhe-Yi WANG
China Journal of Chinese Materia Medica 2023;48(16):4285-4294
Depression exists with high prevalence and heavy disease burden. Stress events play a key role in the occurrence of depression, but the pathological mechanism has not been fully clarified by reason of the complexity and heterogeneity. In recent years, neuroinflammation as a pathological mechanism of depression has received extensive attention. The activated microglia is regarded as the marker of neuroinflammation, which is an important link of stress-induced depression. Stress might induce microglia activation through pattern recognition receptors(PRR), intestinal flora, hypothalamic-pituitary-adrenal(HPA) axis, and other pathways. Cross-talk between impaired microglia function and neurobiological factors such as inflammatory cytokines, serotonin metabolism, and neuroplasticity may lead to depression. At present, a large number of studies have proved that traditional Chinese medicine(TCM) plays an anti-depressive role by inhibiting microglia activation, which may be potential treatment strategies for depressive disorder. This paper reviewed the research progress of stress-induced microglia activation in depression and summarized the mechanism of TCM against depression with regard to microglia, hoping to provide experimental evidence and consideration for TCM against depression through microglia.
Humans
;
Cytokines/metabolism*
;
Depression/drug therapy*
;
Medicine, Chinese Traditional
;
Microglia/metabolism*
;
Neuroinflammatory Diseases
6.Electroacupuncture alleviates postoperative pain through inhibiting neuroinflammation via stimulator of interferon genes/type-1 interferon pathway.
Yuan-Yuan DING ; Feng XU ; Ya-Feng WANG ; Lin-Lin HAN ; Shi-Qian HUANG ; Shuai ZHAO ; Lu-Lin MA ; Tian-Hao ZHANG ; Wen-Jing ZHAO ; Xiang-Dong CHEN
Journal of Integrative Medicine 2023;21(5):496-508
OBJECTIVE:
This work explores the impact of electroacupuncture (EA) on acute postoperative pain (APP) and the role of stimulator of interferon genes/type-1 interferon (STING/IFN-1) signaling pathway modulation in the analgesic effect of EA in APP rats.
METHODS:
The APP rat model was initiated through abdominal surgery and the animals received two 30 min sessions of EA at bilateral ST36 (Zusanli) and SP6 (Sanyinjiao) acupoints. Mechanical, thermal and cold sensitivity tests were performed to measure the pain threshold, and electroencephalograms were recorded in the primary somatosensory cortex to identify the effects of EA treatment on APP. Western blotting and immunofluorescence were used to examine the expression and distribution of proteins in the STING/IFN-1 pathway as well as neuroinflammation. A STING inhibitor (C-176) was administered intrathecally to verify its role in EA.
RESULTS:
APP rats displayed mechanical and thermal hypersensitivities compared to the control group (P < 0.05). APP significantly reduced the amplitude of θ, α and γ oscillations compared to their baseline values (P < 0.05). Interestingly, expression levels of proteins in the STING/IFN-1 pathway were downregulated after inducing APP (P < 0.05). Further, APP increased pro-inflammatory factors, including interleukin-6, tumor necrosis factor-α and inducible nitric oxide synthase, and downregulated anti-inflammatory factors, including interleukin-10 and arginase-1 (P < 0.05). EA effectively attenuated APP-induced painful hypersensitivities (P < 0.05) and restored the θ, α and γ power in APP rats (P < 0.05). Meanwhile, EA distinctly activated the STING/IFN-1 pathway and mitigated the neuroinflammatory response (P < 0.05). Furthermore, STING/IFN-1 was predominantly expressed in isolectin-B4- or calcitonin-gene-related-peptide-labeled dorsal root ganglion neurons and superficial laminae of the spinal dorsal horn. Inhibition of the STING/IFN-1 pathway by intrathecal injection of C-176 weakened the analgesic and anti-inflammatory effects of EA on APP (P < 0.05).
CONCLUSION
EA can generate robust analgesic and anti-inflammatory effects on APP, and these effects may be linked to activating the STING/IFN-1 pathway, suggesting that STING/IFN-1 may be a target for relieving APP. Please cite this article as: Ding YY, Xu F, Wang YF, Han LL, Huang SQ, Zhao S, Ma LL, Zhang TH, Zhao WJ, Chen XD. Electroacupuncture alleviates postoperative pain through inhibiting neuroinflammation via stimulator of interferon genes/type-1 interferon pathway. J Integr Med. 2023; 21(5): 496-508.
Rats
;
Animals
;
Rats, Sprague-Dawley
;
Neuroinflammatory Diseases
;
Electroacupuncture
;
Pain, Postoperative
;
Interferons
7.Dlg1 Knockout Inhibits Microglial Activation and Alleviates Lipopolysaccharide-Induced Depression-Like Behavior in Mice.
Zhixin PENG ; Xiaoheng LI ; Jun LI ; Yuan DONG ; Yuhao GAO ; Yajin LIAO ; Meichen YAN ; Zengqiang YUAN ; Jinbo CHENG
Neuroscience Bulletin 2021;37(12):1671-1682
Microglia-mediated neuroinflammation is widely perceived as a contributor to numerous neurological diseases and mental disorders including depression. Discs large homolog 1 (Dlg1), an adaptor protein, regulates cell polarization and the function of K
Animals
;
Depression/chemically induced*
;
Inflammation
;
Lipopolysaccharides/toxicity*
;
Mice
;
Mice, Inbred C57BL
;
Mice, Knockout
;
Microglia
;
NF-kappa B
;
Neuroinflammatory Diseases
8.Research progress of signal pathways of microglia activation in sleep disorders.
Zhi-Jun SHU ; Quan-Yi ZHANG ; Yi-Peng XU ; Zheng-Yu ZHAO
Acta Physiologica Sinica 2023;75(4):569-574
Sleep is an extremely important physiological state to maintain human life. Sleep disorders can not only cause anxiety and depression, but also induce multi-system diseases that seriously affect brain function and physical health. The neuroinflammation is a key pathological process after sleep disorders, which can induce a series of nervous system diseases. In recent years, the role of microglia activation in neuroinflammation has been paid more and more attention and become a research hotspot in this field. The imbalance of the central microenvironment after sleep disorders leads to changes in the activation and polarization of microglia, which triggers neuroinflammatory response. The activation and polarization of microglia in the sleep disorders are regulated by multiple signaling pathways and complex molecular mechanisms. This paper summarizes five signaling pathways of microglia activation in central inflammation induced by sleep disorders, including P2X7 receptor (P2X7R), p38MAPK, Toll-like receptor 4 (TLR4)/NF-κB, JAK/STAT, and α7 nicotinic acetylcholine receptor (α7-nAChR) pathways, in order to provide reference for further research and clinical treatment targets selection of sleep disorders.
Humans
;
Neuroinflammatory Diseases
;
Microglia/metabolism*
;
Signal Transduction/physiology*
;
NF-kappa B/metabolism*
;
Inflammation/metabolism*
;
Sleep Wake Disorders/metabolism*
9.Tea tree oil, a vibrant source of neuroprotection via neuroinflammation inhibition: a critical insight into repurposing Melaleuca alternifolia by unfolding its characteristics.
Md Atiar RAHMAN ; Abida SULTANA ; Mohammad Forhad KHAN ; Rachasak BOONHOK ; Sharmin AFROZ
Journal of Zhejiang University. Science. B 2023;24(7):554-573
Over the past few decades, complementary and alternative treatments have become increasingly popular worldwide. The purported therapeutic characteristics of natural products have come under increased scrutiny both in vitro and in vivo as part of efforts to legitimize their usage. One such product is tea tree oil (TTO), a volatile essential oil primarily obtained from the native Australian plant, Melaleuca alternifolia, which has diverse traditional and industrial applications such as topical preparations for the treatment of skin infections. Its anti-inflammatory-linked immunomodulatory actions have also been reported. This systematic review focuses on the anti-inflammatory effects of TTO and its main components that have shown strong immunomodulatory potential. An extensive literature search was performed electronically for data curation on worldwide accepted scientific databases, such as Web of Science, Google Scholar, PubMed, ScienceDirect, Scopus, and esteemed publishers such as Elsevier, Springer, Frontiers, and Taylor & Francis. Considering that the majority of pharmacological studies were conducted on crude oils only, the extracted data were critically analyzed to gain further insight into the prospects of TTO being used as a neuroprotective agent by drug formulation or dietary supplement. In addition, the active constituents contributing to the activity of TTO have not been well justified, and the core mechanisms need to be unveiled especially for anti-inflammatory and immunomodulatory effects leading to neuroprotection. Therefore, this review attempts to correlate the anti-inflammatory and immunomodulatory activity of TTO with its neuroprotective mechanisms.
Tea Tree Oil/therapeutic use*
;
Melaleuca
;
Neuroprotection
;
Drug Repositioning
;
Neuroinflammatory Diseases
;
Australia
;
Oils, Volatile
;
Anti-Inflammatory Agents/pharmacology*
10.NLRP3 Inflammasome-Mediated Neuroinflammation and Related Mitochondrial Impairment in Parkinson's Disease.
Neuroscience Bulletin 2023;39(5):832-844
Parkinson's disease (PD) is a common neurodegenerative disorder caused by the loss of dopamine neurons in the substantia nigra and the formation of Lewy bodies, which are mainly composed of alpha-synuclein fibrils. Alpha-synuclein plays a vital role in the neuroinflammation mediated by the nucleotide-binding oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasome in PD. A better understanding of the NLRP3 inflammasome-mediated neuroinflammation and the related mitochondrial impairment during PD progression may facilitate the development of promising therapies for PD. This review focuses on the molecular mechanisms underlying NLRP3 inflammasome activation, comprising priming and protein complex assembly, as well as the role of mitochondrial impairment and its subsequent inflammatory effects on the progression of neurodegeneration in PD. In addition, the therapeutic strategies targeting the NLRP3 inflammasome for PD treatment are discussed, including the inhibitors of NLRP3 inflammatory pathways, mitochondria-focused treatments, microRNAs, and other therapeutic compounds.
Humans
;
Parkinson Disease/complications*
;
alpha-Synuclein
;
Inflammasomes
;
NLR Family, Pyrin Domain-Containing 3 Protein
;
Neuroinflammatory Diseases
;
Mitochondria