1.Clinical applications and characteristics of apparent diffusion coefficient maps for the brain of two dogs.
Boeun KIM ; Kangjae YI ; Sunyoung JUNG ; Seoyeon JI ; Mincheol CHOI ; Junghee YOON
Journal of Veterinary Science 2014;15(3):455-458
Diffusion-weighted imaging (DWI) and apparent diffusion coefficient (ADC) mapping are functional magnetic resonance imaging techniques for detecting water diffusion. DWI and the ADC map were performed for intracranial lesions in two dogs. In necrotizing leukoencephalitis, cavitated lesions contained a hypointense center with a hyperintense periphery on DWI, and hyperintense signals on the ADC maps. In metastatic sarcoma, masses including a necrotic region were hypointense with DWI, and hyperintense on the ADC map with hyperintense perilesional edema on DWI and ADC map. Since DWI and ADC data reflect the altered water diffusion, they can provide additional information at the molecular level.
Animals
;
Brain/*pathology
;
Brain Neoplasms/pathology/*veterinary
;
Diffusion Magnetic Resonance Imaging/*veterinary
;
Dog Diseases/*pathology
;
Dogs
;
Female
;
Leukoencephalopathies/pathology/*veterinary
;
Necrosis/veterinary
;
Neuroimaging/*veterinary
;
Sarcoma/pathology/*veterinary
2.Effect of Harderian adenectomy on the statistical analyses of mouse brain imaging using positron emission tomography.
Minsoo KIM ; Sang Keun WOO ; Jung Woo YU ; Yong Jin LEE ; Kyeong Min KIM ; Joo Hyun KANG ; Kidong EOM ; Sang Soep NAHM
Journal of Veterinary Science 2014;15(1):157-161
Positron emission tomography (PET) using 2-deoxy-2-[18F] fluoro-D-glucose (FDG) as a radioactive tracer is a useful technique for in vivo brain imaging. However, the anatomical and physiological features of the Harderian gland limit the use of FDG-PET imaging in the mouse brain. The gland shows strong FDG uptake, which in turn results in distorted PET images of the frontal brain region. The purpose of this study was to determine if a simple surgical procedure to remove the Harderian gland prior to PET imaging of mouse brains could reduce or eliminate FDG uptake. Measurement of FDG uptake in unilaterally adenectomized mice showed that the radioactive signal emitted from the intact Harderian gland distorts frontal brain region images. Spatial parametric measurement analysis demonstrated that the presence of the Harderian gland could prevent accurate assessment of brain PET imaging. Bilateral Harderian adenectomy efficiently eliminated unwanted radioactive signal spillover into the frontal brain region beginning on postoperative Day 10. Harderian adenectomy did not cause any post-operative complications during the experimental period. These findings demonstrate the benefits of performing a Harderian adenectomy prior to PET imaging of mouse brains.
Animals
;
Brain/*metabolism/radionuclide imaging
;
Fluorodeoxyglucose F18/*diagnostic use
;
Frontal Lobe/metabolism/radionuclide imaging
;
Harderian Gland/metabolism/radionuclide imaging/*surgery
;
Mice
;
Mice, Inbred BALB C
;
Neuroimaging/standards/*veterinary
;
Positron-Emission Tomography/*veterinary
;
Radiopharmaceuticals/*diagnostic use