1.Epigenetic control on cell fate choice in neural stem cells.
Xiao-Ling HU ; Yuping WANG ; Qin SHEN
Protein & Cell 2012;3(4):278-290
Derived from neural stem cells (NSCs) and progenitor cells originated from the neuroectoderm, the nervous system presents an unprecedented degree of cellular diversity, interwoven to ensure correct connections for propagating information and responding to environmental cues. NSCs and progenitor cells must integrate cell-intrinsic programs and environmental cues to achieve production of appropriate types of neurons and glia at appropriate times and places during development. These developmental dynamics are reflected in changes in gene expression, which is regulated by transcription factors and at the epigenetic level. From early commitment of neural lineage to functional plasticity in terminal differentiated neurons, epigenetic regulation is involved in every step of neural development. Here we focus on the recent advance in our understanding of epigenetic regulation on orderly generation of diverse neural cell types in the mammalian nervous system, an important aspect of neural development and regenerative medicine.
Chromatin
;
metabolism
;
DNA Methylation
;
Epigenomics
;
Histones
;
genetics
;
metabolism
;
Humans
;
Neural Stem Cells
;
cytology
;
metabolism
;
Neurogenesis
;
Neuroglia
;
cytology
;
metabolism
;
RNA, Untranslated
;
metabolism
2.Hyperexcitable neurons and altered non-neuronal cells in the compressed spinal ganglion.
Acta Physiologica Sinica 2008;60(5):597-602
The cell body or soma in the dosal root ganglion (DRG) is normally excitable and this excitability can increase and persist after an injury of peripheral sensory neurons. In a rat model of radicular pain, an intraforaminal implantation of a rod that chronically compressed the lumbar DRG ("CCD" model) resulted in neuronal somal hyperexcitability and spontaneous activity that was accompanied by hyperalgesia in the ipsilateral hind paw. By the 5th day after onset of CCD, there was a novel upregulation in neuronal expression of the chemokine, monocyte chemoattractant protein-1 (MCP-1 or CCL2) and also its receptor, CCR2. The neurons developed, in response to topically applied MCP-1, an excitatory response that they normally do not have. CCD also activated non-neuronal cells including, for example, the endothelial cells as evidenced by angiogenesis in the form of an increased number of capillaries in the DRG after 7 days. A working hypothesis is that the CCD induced changes in neurons and non-neuronal cells that may act together to promote the survival of the injured tissue. The release of ligands such as CCL2, in addition to possibly activating nociceptive neurons (maintaining the pain), may also act to preserve injured cells in the face of ischemia and hypoxia, for example, by promoting angiogenesis. Thus, somal hyperexcitability, as often said of inflammation, may represent a double edged sword.
Animals
;
Chemokine CCL2
;
metabolism
;
Ganglia, Spinal
;
cytology
;
pathology
;
Hyperalgesia
;
pathology
;
Neuroglia
;
cytology
;
Nociceptors
;
cytology
;
Pain
;
pathology
;
Rats
;
Rats, Sprague-Dawley
;
Spinal Cord Compression
;
physiopathology
;
Up-Regulation
3.Proliferation and differentiation of endogenous neural stem cells in subventricular zone in rats after traumatic craniocerebral injury.
Li-Sen SUI ; Jia-Bin YU ; Xiao-Dan JIANG
Journal of Southern Medical University 2016;36(8):1094-1099
OBJECTIVETo observe the time course of proliferation and differentiation of neural stem cells (NSCs) in the subventricular zone (SVZ) of rats following traumatic craniocerebral injury (TBI).
METHODSForty-eight SD rats were randomized into 3 groups, namely the control group without any treatment, the sham-operated group with scalp incision and preparation of a cranial window, and TBI group with craniocerebral injury induced by Feeney's method. With nestin and BrdU as two cell markers, NSE as the neuron-specific marker and GFAP as the glial cell marker, immunofluorescence assay with double labeled antibodies was performed to examine the proliferation and differentiation of endogenous NSCs in the SVZ at different time points after TBI.
RESULTSs The numbers of cells positive for nestin/NSE, nestin/GFAP, BrdU/NSE, and BrdU/GFAP in the SVZ of the rats increased significantly after TBI. The positive cells began to increase at 1 day after TBI, reached the peak level at day 3 and became normal at day 14, showing significant differences between the time points of measurement following TBI and from the cell numbers in the control group measured at the same time points. The cells positive for nestin/ GFAP showed the most distinct increase in the SVZ of the rats with TBI.
CONCLUSIONTBI results in mobilization of the NSCs in the SVZ on the injured side to cause the proliferation and differentiation of the endogenous NSCs. The SVZ is one of the most important germinal centers of NSC proliferation and differentiation.
Animals ; Bromodeoxyuridine ; metabolism ; Cell Differentiation ; Cell Proliferation ; Craniocerebral Trauma ; pathology ; Glial Fibrillary Acidic Protein ; metabolism ; Lateral Ventricles ; cytology ; Nestin ; metabolism ; Neural Stem Cells ; cytology ; Neuroglia ; cytology ; Neurons ; cytology ; Phosphopyruvate Hydratase ; metabolism ; Random Allocation ; Rats ; Rats, Sprague-Dawley
4.Intrathecal Lamotrigine Attenuates Antinociceptive Morphine Tolerance and Suppresses Spinal Glial Cell Activation in Morphine-Tolerant Rats.
In Gu JUN ; Sung Hoon KIM ; Yang In YOON ; Jong Yeon PARK
Journal of Korean Medical Science 2013;28(2):300-307
Glial cells play a critical role in morphine tolerance, resulting from repeated administration of morphine. Both the development and the expression of tolerance are suppressed by the analgesic lamotrigine. This study investigated the relationship between the ability of lamotrigine to maintain the antinociceptive effect of morphine during tolerance development and glial cell activation in the spinal cord. In a rat model, morphine (15 microg) was intrathecally injected once daily for 7 days to induce morphine tolerance. Lamotrigine (200 microg) was co-administered with morphine either for 7 days or the first or last 3 days of this 7 day period. Thermal nociception was measured. OX-42 and GFAP immunoreactivity, indicating spinal microglial and astrocytic activation were evaluated on day 8. Tolerance developed after 7 days of intrathecal morphine administration; however, this was completely blocked and reversed by co-administration of lamotrigine. When lamotrigine was coinjected with morphine on days 5-7, the morphine effect was partially restored. Glial cell activation increased with the development of morphine tolerance but was clearly inhibited in the presence of lamotrigine. These results suggest that, in association with the suppression of spinal glial cell activity, intrathecally coadministered lamotrigine attenuates antinociceptive tolerance to morphine.
Analgesics/*pharmacology
;
Animals
;
Antigens, CD11b/metabolism
;
Astrocytes/cytology
;
Drug Tolerance
;
Immunohistochemistry
;
Male
;
Microglia/cytology
;
Morphine/*pharmacology
;
Nerve Tissue Proteins/metabolism
;
Neuroglia/cytology/*metabolism
;
Rats
;
Rats, Sprague-Dawley
;
Spinal Cord/*cytology
;
Triazines/*pharmacology
5.Effect of lysophosphatidic acid on differentiation of embryonic neural stem cells into neuroglial cells in rats in vitro.
Acta Physiologica Sinica 2007;59(6):759-764
To study the effect of lysophosphatidic acid (LPA) on the differentiation of embryonic neural stem cells (NSCs) into neuroglial cells in rats in vitro, both oligodendrocytes and astrocytes were detected by their marker proteins galactocerebroside (Gal-C) and glial fibrillary acidic protein (GFAP), respectively, using double-labeling immunocytochemistry. RT-PCR assay was also used for analyzing the expression of LPA receptors in NSCs. Our results showed that: (1) LPA at different concentrations (0.01-3.0 mumol/L) was added to culture medium and cell counting was carried out on the 7th day in all groups. Exposure to LPA led to a dose-dependent increase of oligodendrocytes with the response peaked at 1.0 mumol/L, with an increased percentage of 32.6% (P<0.01) of total cells as compared to that of 8.5% in the vehicle group. (2) LPA showed no effect on the differentiation of NSCs into astrocytes. (3) RT-PCR assay showed that LPA(1) and LPA(3) receptors were strongly expressed while LPA(2) receptor expressed weakly in NSCs. These results suggest that LPA at low concentration might act as an extracellular signal through the receptors in NSCs, mainly LPA(1) and LPA(3) receptors, to promote the differentiation of NSCs into oligodendrocytes, while it exhibits little, if any, conceivable effect on the differentiation of NSCs into astrocytes.
Animals
;
Cell Differentiation
;
drug effects
;
Cells, Cultured
;
Lysophospholipids
;
pharmacology
;
Neural Stem Cells
;
cytology
;
drug effects
;
Neuroglia
;
cytology
;
Rats
;
Receptors, Lysophosphatidic Acid
;
metabolism
6.Epigallocatechin gallate protects dopaminergic neurons against 1-methyl-4- phenyl-1,2,3,6-tetrahydropyridine-induced neurotoxicity by inhibiting microglial cell activation.
Rui LI ; Ning PENG ; Fang DU ; Xu-ping LI ; Wei-dong LE
Journal of Southern Medical University 2006;26(4):376-380
OBJECTIVETo observe whether the dopaminergic neuroprotective effect of (-)-epigallocatechin gallate (EGCG) is associated with its inhibition of microglial cell activation in vivo.
METHODSThe effects of EGCG at different doses on dopaminergic neuronal survival were tested in a methyl-4-phenyl-pyridinium (MPP+)-induced dopaminergic neuronal injury model in the primary mesencephalic cell cultures. With unbiased stereological method, tyrosine hydroxylase-immunoreactive (TH-ir) cells were counted in the A8, A9 and A10 regions of the substantia nigra (SN) in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated C57BL/6 mice. The effect of EGCG on microglial activation in the SN was also investigated.
RESULTSPretreatment with EGCG (1 to 100 micromol/L) significantly attenuated MPP+-induced TH-ir cell loss by 22.2% to 80.5% in the mesencephalic cell cultures. In MPTP-treated C57BL/6 mice, EGCG at a low concentration (1 mg/kg) provided significant protection against MPTP-induced TH-ir cell loss by 50.9% in the whole nigral area and by 71.7% in the A9 region. EGCG at 5 mg/kg showed more prominent protective effect than at 1 or 10 mg/kg. EGCG pretreatment significantly inhibited microglial activation and CD11b expression induced by MPTP.
CONCLUSIONEGCG exerts potent dopaminergic neuroprotective activity by means of microglial inhibition, which shed light on the potential use of EGCG in treatment of Parkinson's disease.
Animals ; Catechin ; analogs & derivatives ; isolation & purification ; pharmacology ; Dopamine ; metabolism ; MPTP Poisoning ; Male ; Mesencephalon ; cytology ; Mice ; Mice, Inbred C57BL ; Neuroglia ; cytology ; metabolism ; Neurons ; cytology ; Neuroprotective Agents ; pharmacology ; Parkinson Disease ; drug therapy ; Substantia Nigra ; cytology ; Tea ; chemistry
7.Bone marrow stem cell-derived astrocytes are involved in glia limitans formation in rats after brain injury.
Xi-feng ZOU ; Jun ZHU ; Jian-min LI ; Hai-yan ZHANG ; Chun-li ZHAO ; Qun-yuan XU
Journal of Southern Medical University 2009;29(12):2391-2393
OBJECTIVETo investigate the involvement of bone marrow stem cell-derived astrocytes (BMDSCs) in the formation of glia limitans after brain injury.
METHODSIn a female SD rat model of brain injury, green fluorescence protein (GFP)-labeled BMDSCs from male SD rats were transplanted via the caudal vein 24 h after the injury. The rats were sacrificed at 2, 4 and 8 weeks after the transplantation, and immunohistochemistry for glial fibrillary acidic protein (GFAP) was performed to observe the astrocytes. The fluorescence emitted by GFP was observed to identify the presence of the bone marrow-derived stem cells, and the GFAP(+)/GFP(+) cells in the glia limitnas were detected under fluorescence microscopy. RESULTS The GFAP(+)/GFP(+) cells were found in the glia limitans between the brain lesion and normal brain tissue.
CONCLUSIONBone marrow stem cell-derived astrocytes is involved in glia limitans formation after brain injury, which can be of significance in brain injury recovery and implantation of engineered materials.
Animals ; Astrocytes ; cytology ; physiology ; Bone Marrow Cells ; cytology ; metabolism ; Brain Injuries ; pathology ; Female ; Glial Fibrillary Acidic Protein ; metabolism ; Green Fluorescent Proteins ; Male ; Mesenchymal Stromal Cells ; cytology ; Neuroglia ; metabolism ; Random Allocation ; Rats ; Rats, Sprague-Dawley
8.Effects of Ginkgo biloba extract 50 on inflammatory cytokines and glia cell ultrastructures in the prefrontal cortex and hippocampus of aging rats.
Gai-ying HE ; Zhi-xiong ZHANG ; Ying XU
Chinese Journal of Integrated Traditional and Western Medicine 2012;32(8):1064-1068
OBJECTIVETo study the effects of Ginkgo biloba extract 50 (GBE50) on inflammatory cytokines and glia cell injury in the prefrontal cortex and hippocampus of aging rats and its probable mechanism. Methods Totally 45 male SD rats were randomly divided into 4 groups, i.e., the normal control group (n=12), the model group (n=11), the low dose GBE50 group (n=10), and the high dose GBE50 group (n=12). The aging rat model was intraperitoneally injected with D-galactose to establish the aging model for 42 days. Starting from the 22nd day of modeling, rats in the low dose GBE50 group and the high dose GBE50 group were administered by gastrogavage with 75 mg/kg and 150 mg/kg respectively. The protein contents and mRNA expressions of IL-1beta, IL-6, and TNF-a in the prefrontal cortex and hippocampus of rats were detected by radioimmunoassay and Real-time fluorescence quantitative PCR assay respectively. The ultrastructural changes of glia cells in the hippocampal CA1 region were observed by transmission electron microscope. Results The protein contents and mRNA expressions of IL-1beta and TNF-alpha in the prefrontal cortex and the hippocampus of aging rats obviously increased when compared with the normal control group (P < 0.05, P < 0.01). The content of IL-6 in the hippocampus of aging rats obviously decreased (P < 0.01). Compared with the model group, the protein content and mRNA expression of IL-1beta in the prefrontal cortex and the hippocampus were obviously downregulated in the low and high dose GBE50 groups. The content of TNF-alpha in the prefrontal cortex was obviously downregulated in the low and high dose GBE50 groups, the content of TNF-alpha in the hippocampus was obviously downregulated in the low dose GBE50 group (P < 0.05, P < 0.01). The content of IL-6 in the prefrontal cortex of the low dose GBE50 group was up-regulated. The content of IL-6 in the hippocampus of the high dose GBE50 group was also upregulated. The mRNA expression of IL-6 in the prefrontal cortex of the low and high dose GBE50 groups obviously increased (P < 0.05, P < 0.01). Low and high dose GBE50 showed obvious recovery on the ultrastructural damage of glia cells in the hippocampal CA1 region.
CONCLUSIONSGBE50 showed inhibitive effects on the inflammatory reaction of nerves of aging rats. Its mechanism might be possibly correlated with its regulatory effects on the cytokines in the prefrontal cortex and the hippocampus, as well as the ultrastructures of glia cells in the prefrontal cortex and hippocampus to some degree.
Aging ; Animals ; Cytokines ; metabolism ; Ginkgo biloba ; Hippocampus ; cytology ; drug effects ; Interleukin-1beta ; metabolism ; Interleukin-6 ; metabolism ; Male ; Neuroglia ; ultrastructure ; Plant Extracts ; pharmacology ; Prefrontal Cortex ; cytology ; drug effects ; Rats ; Rats, Sprague-Dawley ; Tumor Necrosis Factor-alpha ; metabolism
9.Repair of acute spinal cord injury promoted by transplantation of olfactory ensheathing glia.
Tian-sheng SUN ; Ji-xin REN ; Jian-guo SHI
Acta Academiae Medicinae Sinicae 2005;27(2):143-147
OBJECTIVESTo observe olfactory ensheathing glia (OEG) survival and repair in vivo for spinal cord injury after OEG transplantation.
METHODSThe OEG was cultured with the olfactory bulb of Wistar neonate rats. The spinal cords contusion was made in group A, B, and C with the New York University impactor, then complete transection was performed in the contusion area in group A. OEG labeled by Hoechst was transplanted in group A and B. In group C, DMEM were injected. In group D, laminectomies were done without cord contusion and transection. The functional recovery of the spinal cord injury [Basso, Beattie, Bresnahan (BBB) Locomotor Rating Scale scores] and changes of body weight were observed. The tissue sections were done 24 weeks postoperatively. HE staining, neurofibril (NF) immunohistochemical staining, and silver staining were performed respectively to observe the pathologic changes and axon regeneration. The survival of OEG labeled by Hoechst was observed under the fluorescence microscope.
RESULTSLocomotive behaviour improved 4 weeks postoperatively. The BBB locomotion scores of group A and B were significantly higher than that of group C in all periods (from 4 weeks to 24 weeks) (P < 0.01). Sixteen weeks after operation, the BBB locomotion scores became stable and showed no change. HE staining showed that the area of spinal cord injury was disorder and the number of nerve cell was more in group A and B. In group C, there was the obvious cavum and few wring nerve fiber in the area of spinal cord injury. The nerve fibers innervated to the injuried area in group A and B were more than that of group C, but less than that of group D. A great number of OEG labeled by Hoechst were observed around spinal injuried area under fluorescence microscope. After operation, the body weight reduced in every group. The body weight of group D had recovered after 2 weeks and gradully increased. After 4 weeks, the body weight in group A, B, and C decreased to the minimum and were significantly less than that of group D (P < 0.01). After this, body weight in group A and B increased and was significantly more than that of group C (P < 0.05).
CONCLUSIONSOEG transplantation can promote the axons regeneration and the recovery of locomotion function in experimental spinal cord injuries.
Animals ; Animals, Newborn ; Axons ; physiology ; Cells, Cultured ; Female ; Glial Fibrillary Acidic Protein ; metabolism ; Nerve Regeneration ; Neuroglia ; cytology ; transplantation ; Olfactory Bulb ; cytology ; transplantation ; Olfactory Mucosa ; cytology ; transplantation ; Rats ; Rats, Wistar ; Spinal Cord ; physiopathology ; surgery ; Spinal Cord Injuries ; surgery
10.Host glial cell canceration induced by glioma stem cells in GFP/RFP dual fluorescence orthotopic glioma models in nude mice.
Yan-ming CHEN ; Xi-feng FEI ; Ai-dong WANG ; Xing-liang DAI ; Jin-shi ZHANG ; Bao-qian CUI ; Quan-bin ZHANG ; Yao-dong ZHAO ; Hua CHEN ; Zhi-min WANG ; Qing LAN ; Jun DONG ; Qiang HUANG
Chinese Journal of Oncology 2013;35(1):5-10
OBJECTIVEDuring the process of tissue remodeling in human tumor transplantation models, the roles of the inoculated tumor cells and host tissue in tumor progression is still largely unknown. The aim of this study was to investigate the relationships and interactions between these two sides using GFP-RFP double fluorescence tracing technique.
METHODSRed fluorescence protein (RFP) gene was stably transfected into glioma stem cell line SU3, then SU3-RFP cells were transplanted into the brain of athymic nude mice with green fluorescence protein (GFP) expression. After the intracerebral tumors were formed, the relationship and interaction between GFP cells and RFP cells were analyzed. Highly proliferative GFP cells were screened out, and monocloned with micro-pipetting. DNA content assay, chromosome banding and carcinogenicity test of the GFP cells were performed to observe the GFP cells' cancerous phenotype in nude mice.
RESULTSIn the transplantable tumor tissue, besides a great quantity of RFP cells, there were still a proportion of GFP cells and GFP/RFP fusion cells. The proportion of RFP cells, GFP cells and GFP/RFP cells were (88.99 ± 1.46)%, (5.59 ± 1.00)%, and (4.11 ± 1.020)%, respectively. Two monoclonal host GFP cells (H1 and H9) were cloned, which demonstrated the properties of immortality, loss of contact inhibition, and ultra-tetraploid when cultured in vitro. Both H1 and H9 cells expressed CNP, a specific marker of oligodendrocytes. The GFP cells also demonstrated 100% tumorigenic rate and high invasive properties in vivo.
CONCLUSIONSIn this glioma transplantation model, the transplanted tumor tissues contained not only transplanted glioma stem cells but also cancerous host GFP cells. Our findings offer important clues to further research on the relationships among different members in the tumor microenvironment.
2',3'-Cyclic Nucleotide 3'-Phosphodiesterase ; metabolism ; Animals ; Brain ; cytology ; metabolism ; Cell Communication ; Cell Line, Tumor ; Cell Transformation, Neoplastic ; Glioma ; metabolism ; pathology ; Green Fluorescent Proteins ; metabolism ; Humans ; Intermediate Filament Proteins ; metabolism ; Luminescent Proteins ; genetics ; metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Nude ; Neoplasm Transplantation ; Neoplastic Stem Cells ; cytology ; metabolism ; Nerve Tissue Proteins ; metabolism ; Nestin ; Neuroglia ; cytology ; metabolism ; Transfection ; Tumor Microenvironment