1.A neural circuit from paraventricular hypothalamic nucleus oxytocin neurons to trigeminal nucleus caudalis GABAergic neurons modulates pain sensitization in a mouse model of chronic migraine.
Houda CHEN ; Wanyun ZOU ; Xufeng XU ; Jiang BIAN
Journal of Zhejiang University. Medical sciences 2025;54(5):641-652
OBJECTIVES:
To investigate the role of a neural pathway from oxytocin (OXT) neurons in the paraventricular hypothalamic nucleus (PVN) to γ-aminobutyric acid (GABA) neurons (GABAergic neurons) in the trigeminal nucleus caudalis (TNC) in regulating pain sensitization in a mouse model of chronic migraine and to explore the underlying mechanisms.
METHODS:
A chronic migraine mouse model was established by intraperitoneal injection of nitroglycerin (NTG, 1 mg/mL, 10 mg/kg) on days 1, 3, 5, 7, and 9. The study consisted of four parts: PartⅠ: 24 male wild-type C57BL/6J mice were divided into four groups (n=6 in each), receiving single or repeated injection of NTG or saline, respectively. Immunofluorescence was used to detect c-Fos and OXT expression in the PVN. Part Ⅱ: 6 male OXT-Cre transgenic C57BL/6J mice were used for anterograde monosynaptic tracing combined with RNAscope and immunofluorescence to identify neural projections from PVN OXT neurons to TNC GABAergic neurons. Part Ⅲ: 30 male OXT-Cre transgenic C57BL/6J mice were bilaterally injected Cre-dependent chemogenetic activation virus into the PVN. These mice were randomly divided into five groups, with six mice in each group. Mice in the clozapine N-oxide (CNO) group and the control group were intra-peritoneally injected with 0.1 mg/mL of CNO solution (1 mg/kg) and the same volume of isotonic normal saline, respectively. 3 hours after the injection, the brain tissues were harvest and c-Fos immunofluorescence staining was performed to verify the efficiency of chemogenetic activation virus. Mice in the model control group and the CNO activated model group were subjected to chronic migraine modeling, with bilateral TNC injection of isotonic normal saline and CNO, respectively, on day 10. The mice in the negative control group were bilaterally intra-TNC injected with isotonic normal saline. After 30 minutes, the Von-Frey filament and acetone tests were used to assess the mechanical pain threshold and cold pain response time in the periorbital region of the mice in these three groups. Part Ⅳ: 24 male OXT-Cre transgenic C57BL/6J mice were bilaterally injected with the Cre-dependent chemogenetic activation virus into the PVN. These mice were randomly divided into four groups, with six mice in each group. Mice in the model control group, the CNO activated model group and the atosiban group were subjected to chronic migraine modeling. On day 10, mice in the negative control group and the model control group were intraperitoneally injected with isotonic normal saline, while mice in the CNO activated model group and the atosiban group were intraperitoneally injected with CNO. After 15 minutes, mice in the atosiban group were bilaterally intra-TNC injected with atosiban, while mice in other three groups were bilaterally intra-TNC injected with isotonic normal saline containing 1% dimethyl sulfoxide. After 15 minutes, the Von-Frey filament and acetone tests were used to assess the mechanical pain threshold and cold pain response time in the periorbital region of the mice. The GABA content in the bilateral TNC was detected by high-performance liquid chromatography (HPLC).
RESULTS:
Mice with chronic migraine models exhibited reduced periorbital mechanical pain thresholds and increased periorbital cold pain reaction time, accompanied by an increase in both the number of c-Fos+ neurons and the percentage of c-Fos+ OXT neurons in the PVN (all P<0.05). The anterograde tracing virus and RNAscope combined with immunofluorescence staining showed that PVN OXT neurons projected to TNC GABAergic neurons. Immuno-fluorescence staining demonstrated that compared with the control group, the percentage of c-Fos+ OXT neurons in the PVN of CNO group increased (P<0.05). In bilateral intra-TNC drug administration experiments, compared with the model control group, the periorbital mechanical pain threshold increased, and the periorbital cold pain reaction time decreased in the CNO activated model group (both P<0.05). In intraperitoneal drug administration experiments, compared with the CNO activate model group, the periorbital mechanical pain threshold decreased, and the periorbital cold pain reaction time increased in the atosiban group (both P<0.05). HPLC analysis showed that, compared with the negative control group, the model control group and the atosiban group, GABA level of TNC in the CNO activated model group increased (all P<0.05).
CONCLUSIONS
PVN OXT neurons exert a descending facilitatory effect on GABAergic neurons in the TNC via OXT release, thereby ameliorating pain sensitization in chronic migraine.
Animals
;
Paraventricular Hypothalamic Nucleus/physiopathology*
;
Male
;
Mice, Inbred C57BL
;
Migraine Disorders/physiopathology*
;
Mice
;
GABAergic Neurons/physiology*
;
Oxytocin/physiology*
;
Disease Models, Animal
;
Neurons/physiology*
;
Mice, Transgenic
;
Neural Pathways
;
Chronic Disease
2.Computational Modeling of the Prefrontal-Cingulate Cortex to Investigate the Role of Coupling Relationships for Balancing Emotion and Cognition.
Jinzhao WEI ; Licong LI ; Jiayi ZHANG ; Erdong SHI ; Jianli YANG ; Xiuling LIU
Neuroscience Bulletin 2025;41(1):33-45
Within the prefrontal-cingulate cortex, abnormalities in coupling between neuronal networks can disturb the emotion-cognition interactions, contributing to the development of mental disorders such as depression. Despite this understanding, the neural circuit mechanisms underlying this phenomenon remain elusive. In this study, we present a biophysical computational model encompassing three crucial regions, including the dorsolateral prefrontal cortex, subgenual anterior cingulate cortex, and ventromedial prefrontal cortex. The objective is to investigate the role of coupling relationships within the prefrontal-cingulate cortex networks in balancing emotions and cognitive processes. The numerical results confirm that coupled weights play a crucial role in the balance of emotional cognitive networks. Furthermore, our model predicts the pathogenic mechanism of depression resulting from abnormalities in the subgenual cortex, and network functionality was restored through intervention in the dorsolateral prefrontal cortex. This study utilizes computational modeling techniques to provide an insight explanation for the diagnosis and treatment of depression.
Prefrontal Cortex/physiology*
;
Humans
;
Emotions/physiology*
;
Cognition/physiology*
;
Gyrus Cinguli/physiology*
;
Computer Simulation
;
Models, Neurological
;
Neural Pathways/physiology*
;
Nerve Net/physiology*
3.Cortical Morphological Networks Differ Between Gyri and Sulci.
Qingchun LIN ; Suhui JIN ; Guole YIN ; Junle LI ; Umer ASGHER ; Shijun QIU ; Jinhui WANG
Neuroscience Bulletin 2025;41(1):46-60
This study explored how the human cortical folding pattern composed of convex gyri and concave sulci affected single-subject morphological brain networks, which are becoming an important method for studying the human brain connectome. We found that gyri-gyri networks exhibited higher morphological similarity, lower small-world parameters, and lower long-term test-retest reliability than sulci-sulci networks for cortical thickness- and gyrification index-based networks, while opposite patterns were observed for fractal dimension-based networks. Further behavioral association analysis revealed that gyri-gyri networks and connections between gyral and sulcal regions significantly explained inter-individual variance in Cognition and Motor domains for fractal dimension- and sulcal depth-based networks. Finally, the clinical application showed that only sulci-sulci networks exhibited morphological similarity reductions in major depressive disorder for cortical thickness-, fractal dimension-, and gyrification index-based networks. Taken together, these findings provide novel insights into the constraint of the cortical folding pattern to the network organization of the human brain.
Humans
;
Cerebral Cortex/anatomy & histology*
;
Male
;
Female
;
Magnetic Resonance Imaging
;
Adult
;
Connectome/methods*
;
Young Adult
;
Nerve Net/anatomy & histology*
;
Neural Pathways
;
Depressive Disorder, Major/diagnostic imaging*
4.Behavioral Animal Models and Neural-Circuit Framework of Depressive Disorder.
Xiangyun TIAN ; Scott J RUSSO ; Long LI
Neuroscience Bulletin 2025;41(2):272-288
Depressive disorder is a chronic, recurring, and potentially life-endangering neuropsychiatric disease. According to a report by the World Health Organization, the global population suffering from depression is experiencing a significant annual increase. Despite its prevalence and considerable impact on people, little is known about its pathogenesis. One major reason is the scarcity of reliable animal models due to the absence of consensus on the pathology and etiology of depression. Furthermore, the neural circuit mechanism of depression induced by various factors is particularly complex. Considering the variability in depressive behavior patterns and neurobiological mechanisms among different animal models of depression, a comparison between the neural circuits of depression induced by various factors is essential for its treatment. In this review, we mainly summarize the most widely used behavioral animal models and neural circuits under different triggers of depression, aiming to provide a theoretical basis for depression prevention.
Animals
;
Disease Models, Animal
;
Depressive Disorder/psychology*
;
Humans
;
Behavior, Animal/physiology*
;
Nerve Net/physiopathology*
;
Brain/physiopathology*
;
Neural Pathways/physiopathology*
5.The Medial Prefrontal Cortex-Basolateral Amygdala Circuit Mediates Anxiety in Shank3 InsG3680 Knock-in Mice.
Jiabin FENG ; Xiaojun WANG ; Meidie PAN ; Chen-Xi LI ; Zhe ZHANG ; Meng SUN ; Tailin LIAO ; Ziyi WANG ; Jianhong LUO ; Lei SHI ; Yu-Jing CHEN ; Hai-Feng LI ; Junyu XU
Neuroscience Bulletin 2025;41(1):77-92
Anxiety disorder is a major symptom of autism spectrum disorder (ASD) with a comorbidity rate of ~40%. However, the neural mechanisms of the emergence of anxiety in ASD remain unclear. In our study, we found that hyperactivity of basolateral amygdala (BLA) pyramidal neurons (PNs) in Shank3 InsG3680 knock-in (InsG3680+/+) mice is involved in the development of anxiety. Electrophysiological results also showed increased excitatory input and decreased inhibitory input in BLA PNs. Chemogenetic inhibition of the excitability of PNs in the BLA rescued the anxiety phenotype of InsG3680+/+ mice. Further study found that the diminished control of the BLA by medial prefrontal cortex (mPFC) and optogenetic activation of the mPFC-BLA pathway also had a rescue effect, which increased the feedforward inhibition of the BLA. Taken together, our results suggest that hyperactivity of the BLA and alteration of the mPFC-BLA circuitry are involved in anxiety in InsG3680+/+ mice.
Animals
;
Prefrontal Cortex/metabolism*
;
Basolateral Nuclear Complex/metabolism*
;
Mice
;
Anxiety/metabolism*
;
Nerve Tissue Proteins/genetics*
;
Male
;
Gene Knock-In Techniques
;
Pyramidal Cells/physiology*
;
Mice, Transgenic
;
Neural Pathways/physiopathology*
;
Mice, Inbred C57BL
;
Microfilament Proteins
6.Activation of Centromedial Amygdala GABAergic Neurons Produces Hypotension in Mice.
Xiaoyi WANG ; Ziteng YUE ; Luo SHI ; Wei HE ; Liuqi SHAO ; Yuhang LIU ; Jinye ZHANG ; Shangyu BI ; Tianjiao DENG ; Fang YUAN ; Sheng WANG
Neuroscience Bulletin 2025;41(5):759-774
The central amygdala (CeA) is a crucial modulator of emotional, behavioral, and autonomic functions, including cardiovascular responses. Despite its importance, the specific circuit by which the CeA modulates blood pressure remains insufficiently explored. Our investigations demonstrate that photostimulation of GABAergic neurons in the centromedial amygdala (CeMGABA), as opposed to those in the centrolateral amygdala (CeL), produces a depressor response in both anesthetized and freely-moving mice. In addition, activation of CeMGABA axonal terminals projecting to the nucleus tractus solitarius (NTS) significantly reduces blood pressure. These CeMGABA neurons form synaptic connections with NTS neurons, allowing for the modulation of cardiovascular responses by influencing the caudal or rostral ventrolateral medulla. Furthermore, CeMGABA neurons targeting the NTS receive dense inputs from the CeL. Consequently, stimulation of CeMGABA neurons elicits hypotension through the CeM-NTS circuit, offering deeper insights into the cardiovascular responses associated with emotions and behaviors.
Animals
;
GABAergic Neurons/physiology*
;
Male
;
Central Amygdaloid Nucleus/physiopathology*
;
Hypotension/physiopathology*
;
Mice
;
Blood Pressure/physiology*
;
Mice, Inbred C57BL
;
Solitary Nucleus/physiology*
;
Photic Stimulation
;
Neural Pathways/physiology*
7.Evolution of the Rich Club Properties in Mouse, Macaque, and Human Brain Networks: A Study of Functional Integration, Segregation, and Balance.
Xiaoru ZHANG ; Ming SONG ; Wentao JIANG ; Yuheng LU ; Congying CHU ; Wen LI ; Haiyan WANG ; Weiyang SHI ; Yueheng LAN ; Tianzi JIANG
Neuroscience Bulletin 2025;41(9):1630-1644
The rich club, as a community of highly interconnected nodes, serves as the topological center of the network. However, the similarities and differences in how the rich club supports functional integration and segregation in the brain across different species remain unknown. In this study, we first detected and validated the rich club in the structural networks of mouse, monkey, and human brains using neuronal tracing or diffusion magnetic resonance imaging data. Further, we assessed the role of rich clubs in functional integration, segregation, and balance using quantitative metrics. Our results indicate that the presence of a rich club facilitates whole-brain functional integration in all three species, with the functional networks of higher species exhibiting greater integration. These findings are expected to help to understand the relationship between brain structure and function from the perspective of brain evolution.
Animals
;
Humans
;
Brain/diagnostic imaging*
;
Mice
;
Male
;
Nerve Net/diagnostic imaging*
;
Macaca
;
Female
;
Neural Pathways/diagnostic imaging*
;
Magnetic Resonance Imaging
;
Biological Evolution
;
Adult
;
Diffusion Magnetic Resonance Imaging
;
Brain Mapping
;
Species Specificity
;
Mice, Inbred C57BL
8.Intrinsic Functional Connectivity Associated with γ‑Aminobutyric Acid and Glutamate/Glutamine in the Lateral Prefrontal Cortex and Internalizing Psychopathology in Adolescents.
Kai WANG ; Harry R SMOLKER ; Mark S BROWN ; Hannah R SNYDER ; Yu CHENG ; Benjamin L HANKIN ; Marie T BANICH
Neuroscience Bulletin 2025;41(9):1553-1569
In this study, we systematically tested the hypothesis that during the critical developmental period of adolescence, on a macro scale, the concentrations of major excitatory and inhibitory neurotransmitters (glutamate/glutamine and γ‑aminobutyric acid [GABA]) in the dorsal and ventral lateral prefrontal cortex are associated with the brain's functional connectivity and an individual's psychopathology. Neurotransmitters were measured via magnetic resonance spectroscopy while functional connectivity was measured with resting-state fMRI (n = 121). Seed-based and network-based analyses revealed associations of neurotransmitter concentrations and functional connectivities between regions/networks that are connected to prefrontal cortices via structural connections that are thought to be under dynamic development during adolescence. These regions tend to be boundary areas between functional networks. Furthermore, several connectivities were found to be associated with individual's levels of internalizing psychopathology. These findings provide insights into specific neurochemical mechanisms underlying the brain's macroscale functional organization, its development during adolescence, and its potential associations with symptoms associated with internalizing psychopathology.
Humans
;
Adolescent
;
Glutamic Acid/metabolism*
;
Prefrontal Cortex/diagnostic imaging*
;
Male
;
Glutamine/metabolism*
;
Female
;
gamma-Aminobutyric Acid/metabolism*
;
Magnetic Resonance Imaging
;
Magnetic Resonance Spectroscopy
;
Nerve Net/metabolism*
;
Neural Pathways
;
Connectome
9.Sexually Dimorphic Cellular Architecture and Neural Circuity of ovBNST Proenkephalin Neurons.
Limei SONG ; Yuqing ZHANG ; Mengqi FENG ; Wenwen SU ; Riming ZHU ; Bin ZHANG ; Xia ZHANG ; Jie LI
Neuroscience Bulletin 2025;41(9):1589-1602
Sexual dimorphism in the brain underlies behavioral differences between sexes. The bed nucleus of the stria terminalis (BNST) is a complex nucleus that differs between males and females, but the sexual dimorphism in cytoarchitecture and the connectome of its oval subdivision (ovBNST) remains largely unexplored. By combining snRNA-seq and transgenic labeling, we found a higher density of ovBNST proenkephalin (ovBNSTPENK) neurons in male than female mice. Anatomically, we virally mapped the efferents and afferents of ovBNSTPENK neurons, finding reciprocally dimorphic connections with the hypothalamus and striatum. Gene enrichment analysis suggests that ovBNSTPENK neurons are modulated by the upstream dopamine pathway. Functionally, by applying caspase-3-mediated depletion of ovBNSTPENK neurons, we found that loss of these neurons enhanced locomotor activity in male but not female mice, without altering the anxiety-like phenotypes in either sex. Our study may pave the way for a better understanding of the anatomical and functional profiles of ovBNSTPENK neurons from a sexually dimorphic perspective.
Animals
;
Male
;
Female
;
Septal Nuclei/physiology*
;
Sex Characteristics
;
Neurons/physiology*
;
Enkephalins/metabolism*
;
Mice
;
Mice, Transgenic
;
Protein Precursors/metabolism*
;
Mice, Inbred C57BL
;
Neural Pathways/physiology*
10.From Correlation to Causation: Understanding Episodic Memory Networks.
Ahsan KHAN ; Jing LIU ; Maité CRESPO-GARCÍA ; Kai YUAN ; Cheng-Peng HU ; Ziyin REN ; Chun-Hang Eden TI ; Desmond J OATHES ; Raymond Kai-Yu TONG
Neuroscience Bulletin 2025;41(8):1463-1486
Episodic memory, our ability to recall past experiences, is supported by structures in the medial temporal lobe (MTL) particularly the hippocampus, and its interactions with fronto-parietal brain regions. Understanding how these brain regions coordinate to encode, consolidate, and retrieve episodic memories remains a fundamental question in cognitive neuroscience. Non-invasive brain stimulation (NIBS) methods, especially transcranial magnetic stimulation (TMS), have advanced episodic memory research beyond traditional lesion studies and neuroimaging by enabling causal investigations through targeted magnetic stimulation to specific brain regions. This review begins by delineating the evolving understanding of episodic memory from both psychological and neurobiological perspectives and discusses the brain networks supporting episodic memory processes. Then, we review studies that employed TMS to modulate episodic memory, with the aim of identifying potential cortical regions that could be used as stimulation sites to modulate episodic memory networks. We conclude with the implications and prospects of using NIBS to understand episodic memory mechanisms.
Humans
;
Memory, Episodic
;
Transcranial Magnetic Stimulation/methods*
;
Brain/physiology*
;
Nerve Net/physiology*
;
Mental Recall/physiology*
;
Neural Pathways/physiology*

Result Analysis
Print
Save
E-mail