1.Morphometric Evaluation of PGP9.5 and NCAM Expressing Nerve Fibers in Colonic Muscle of Patients with Hirschsprung's Disease.
Jung Tak OH ; Ai Ri HAN ; Woo Ick YANG ; Seok Joo HAN ; Seung Hoon CHOI ; Eui Ho HWANG
Yonsei Medical Journal 2002;43(1):31-36
A quantitative assessment of the density of the protein gene product 9.5 (PGP9.5), the neural cell adhesion molecule (NCAM), and the low-affinity nerve growth factor receptor (NGFR) expressing nerve fibers in the circular muscle layer in the colon was carried out by morphometric analyses from 13 patients with Hirschsprung's disease (HD). The difference in the nerve fiber density between the ganglionic and aganglionic segments was compared by calculating the ratio of the sum of the areas occupied by positively stained nerve fibers per unit area of the muscle after immunohistochemical staining on paraffin embedded tissue sections using computer software. There was an obvious difference in the density of the PGP9.5 stained nerve fibers between the ganglionic (0.0380 +/- 0.0171) and aganglionic segments (0.0143 +/- 0.01661). The NCAM-positive nerve fibers were fewer in number than those of both the PGP9.5-positive fibers and NCAM-positive fibers, which were also markedly lower in number in the aganglionic segment (0.0066 +/- 0.0076) than in the ganglionic segment (0.0230 +/- 0.0195). Immunostaining for low-affinity NGFR revealed much fainter staining in the ganglionic and aganglionic segment without a statistically significant difference in their density. Considering the fact that PGP9.5 is a very sensitive marker for nerve fibers, the results of this study reaffirm the innervation failure of the proper muscle in HD. The decreased NCAM expression level in the aganglionic segment appears to be caused not by the selective down-regulation of NCAM expression among the nerve fibers but by a markedly reduced number of nerve fibers.
Colon/*innervation
;
Hirschsprung Disease/*pathology
;
Human
;
Muscle, Smooth/*innervation
;
Nerve Fibers/*chemistry/pathology
;
Neural Cell Adhesion Molecules/*analysis
;
Receptor, Nerve Growth Factor/analysis
;
Thiolester Hydrolases/*analysis
2.Expression of cell adhesion molecules in acute leukemia cell.
Xiaoping JU ; Min PENG ; Xiaoping XU ; Shuqing LU ; Yao LI ; Kang YING ; Yi XIE ; Yumin MAO ; Fang XIA
Chinese Journal of Hematology 2002;23(11):581-584
OBJECTIVETo investigate the role of cell adhesion molecule in the development and extramedullary infiltration (EI) of acute leukemia.
METHODSThe expressions of neural cell adhesion molecule (NCAM) gene, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule (VCAM-1) genes in 25 acute leukemia patients bone marrow cells were detected by microarray and reverse transcriptase-polymerase chain reaction (RT-PCR).
RESULTSThe expressions of NCAM, ICAM-1 and VCAM-1 gene were significantly higher in acute leukemia cells and leukemia cells with EI than in normal tissues and leukemia cells without EI, respectively, both by cDNA microarray and by RT-PCR.
CONCLUSIONThe cDNA microarray is a powerful technique in analysis of acute leukemia cells associated genes. High expressions of cell adhesion molecule genes might be correlated with leukemia pathogenesis and infiltration of acute leukemia cell.
Acute Disease ; Adolescent ; Adult ; Aged ; Bone Marrow Cells ; metabolism ; pathology ; Cell Adhesion Molecules ; genetics ; Female ; Gene Expression Regulation, Neoplastic ; Humans ; Intercellular Adhesion Molecule-1 ; genetics ; Leukemia, Myeloid ; genetics ; pathology ; Male ; Middle Aged ; Neural Cell Adhesion Molecules ; genetics ; Oligonucleotide Array Sequence Analysis ; Precursor Cell Lymphoblastic Leukemia-Lymphoma ; genetics ; pathology ; RNA, Messenger ; genetics ; metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; Vascular Cell Adhesion Molecule-1 ; genetics
3.Clinicopathologic Study on Combined Hepatocellular Carcinoma and Cholangiocarcinoma: with Emphasis on the Intermediate Cell Morphology.
Ho Sung PARK ; Jun Sang BAE ; Kyu Yun JANG ; Ju Hyung LEE ; Hee Chul YU ; Ji Hyeon JUNG ; Baik Hwan CHO ; Myoung Ja CHUNG ; Woo Sung MOON
Journal of Korean Medical Science 2011;26(8):1023-1030
Combined hepatocellular carcinoma and cholangiocarcinoma (combined HCC-CC) is a rare subtype of primary liver cancer. We investigated the histopathologic features of transitional or intermediate areas in 21 combined HCC-CCs and immunophenotypes using different hepatic progenitor cell markers (CK7, CK19, c-kit, NCAM, and EpCAM). Major histologic findings of transitional or intermediate areas of 21 combined HCC-CCs included strands/trabeculae of small, uniform, oval-shaped cells with scant cytoplasm and hyperchromatic nuclei embedded within an abundant stroma, small cells with an antler-like anastomosing pattern, and solid nests of intermediate hepatocyte-like cells surrounded by small cells in periphery, in order of frequency. The intermediate area of one tumor was composed predominantly of spindle cells arranged in short fascicles. Immunophenotype of tumor cells with intermediate morphology suggested a progenitor cell origin for this tumor. Clinical findings of combined HCC-CC showed a closer resemblance with those of HCC than those of CC. In univariate analysis, tumor size, TNM stage, and serum alpha-fetoprotein levels showed a significant association with poor patient survival. Serum alpha-fetoprotein level was an independent prognostic indicator in multivariate analysis. In conclusion, an awareness of the clinicopathologic features, specifically the various morphologic features of intermediate areas in this tumor, is essential for prevention of potential misdiagnosis as another tumor.
Adult
;
Aged
;
Antigens, Neoplasm/metabolism
;
Carcinoma, Hepatocellular/*pathology
;
Cell Adhesion Molecules/metabolism
;
Cholangiocarcinoma/*pathology
;
Female
;
Humans
;
Immunophenotyping
;
Keratin-19/metabolism
;
Keratin-7/metabolism
;
Liver Neoplasms/*pathology
;
Male
;
Middle Aged
;
Neural Cell Adhesion Molecules/metabolism
;
Prognosis
;
Proto-Oncogene Proteins c-kit/metabolism
;
alpha-Fetoproteins/analysis
4.Effects of levetiracetam on the expression of NCAM and GAP-43 mRNA in the hippocampus of rats with epilepsy.
Tian-Ming JIA ; Tao LIU ; Bin LUAN ; Xiao-Li LI ; Xiao-Li ZHANG
Chinese Journal of Contemporary Pediatrics 2011;13(5):428-431
OBJECTIVEThis study explored the effects of levetiracetam (LEV) on the expression of nerve cell adhesion molecule (NCAM) and growth-associated protein 43 (GAP-43) mRNA in the hippocampus of rats with epilepsy induced by lithium-pilocarpine (Li-PILO) in order to provide a basis for investigating the antiepileptic mechanism of LEV and its doseresponse.
METHODSForty-eight Wistar rats were randomly divided into a normal control, a Li-PILO model and two LEV treatment groups (LEV: 150 and 300 mg/kg) (n=12 each). The LEV treatment groups received LEV by intragastric administration 6 hrs after status epilepticus (once daily for 2 two weeks). The expressions of NCAM and GAP-43 mRNA in the hippocampus was determined by real-time PCR.
RESULTSThe expression of NCAM and GAP-43 mRNA in the Li-PILO model group was significantly higher than in the normal control group (P<0.05). LEV treatment of 150 and 300 mg/kg significantly decreased the expression of NCAM and GAP-43 mRNA compared with the Li-PILO model group (P<0.05). The LEV treatment group at the dose of 300 mg/kg showed significantly lower expression of NCAM and GAP-43 mRNA than the 150 mg/kg LEV treatment group (P<0.05).
CONCLUSIONSLi-PILO can up-regulate the expressions of NCAM and GAP-43 mRNA in the hippocampus of rats with epilepsy. LEV can inhibit the expression of NCAM and GAP-43 mRNA and the effect is associated with the dose of LEV.
Animals ; Anticonvulsants ; therapeutic use ; Epilepsy ; drug therapy ; metabolism ; GAP-43 Protein ; genetics ; Hippocampus ; metabolism ; Male ; Neural Cell Adhesion Molecules ; genetics ; Piracetam ; analogs & derivatives ; pharmacology ; therapeutic use ; RNA, Messenger ; analysis ; Rats ; Rats, Wistar
5.Identification of semaphorin 5A interacting protein by applying apriori knowledge and peptide complementarity related to protein evolution and structure.
Anguraj SADANANDAM ; Michelle L VARNEY ; Rakesh K SINGH
Genomics, Proteomics & Bioinformatics 2008;6(3-4):163-174
In the post-genomic era, various computational methods that predict protein-protein interactions at the genome level are available; however, each method has its own advantages and disadvantages, resulting in false predictions. Here we developed a unique integrated approach to identify interacting partner(s) of Semaphorin 5A (SEMA5A), beginning with seven proteins sharing similar ligand interacting residues as putative binding partners. The methods include Dwyer and Root-Bernstein/Dillon theories of protein evolution, hydropathic complementarity of protein structure, pattern of protein functions among molecules, information on domain-domain interactions, co-expression of genes and protein evolution. Among the set of seven proteins selected as putative SEMA5A interacting partners, we found the functions of Plexin B3 and Neuropilin-2 to be associated with SEMA5A. We modeled the semaphorin domain structure of Plexin B3 and found that it shares similarity with SEMA5A. Moreover, a virtual expression database search and RT-PCR analysis showed co-expression of SEMA5A and Plexin B3 and these proteins were found to have co-evolved. In addition, we confirmed the interaction of SEMA5A with Plexin B3 in co-immunoprecipitation studies. Overall, these studies demonstrate that an integrated method of prediction can be used at the genome level for discovering many unknown protein binding partners with known ligand binding domains.
Binding Sites
;
genetics
;
Cell Line, Tumor
;
Cluster Analysis
;
Computational Biology
;
methods
;
Databases, Protein
;
Gene Expression Profiling
;
Humans
;
Hydrophobic and Hydrophilic Interactions
;
Immunoprecipitation
;
Membrane Proteins
;
chemistry
;
genetics
;
metabolism
;
Models, Molecular
;
Nerve Tissue Proteins
;
chemistry
;
genetics
;
metabolism
;
Neural Cell Adhesion Molecules
;
chemistry
;
genetics
;
metabolism
;
Protein Binding
;
Protein Interaction Mapping
;
methods
;
Protein Structure, Tertiary
;
Reverse Transcriptase Polymerase Chain Reaction