1.Shear bond strength of luting cements to fixed superstructure metal surfaces under various seating forces
Fusun OZER ; Elif PAK-TUNC ; Nesrin ESEN DAGLI ; Deepika RAMACHANDRAN ; Deniz SEN ; Markus Bernhard BLATZ
The Journal of Advanced Prosthodontics 2018;10(5):340-346
PURPOSE: In this study, the shear bond strengths (SBS) of luting cements to fixed superstructure metal surfaces under various seating forces were investigated. MATERIALS AND METHODS: Seven different cements [Polycarboxylate (PCC), Glass-Ionomer (GIC), Zinc phospahate (ZPC), Self-adhesive resin (RXU), Resin (C&B), and Temporary cements ((RXT) and (TCS))] were bonded to a total number of 224 square blocks (5×5×3 mm) made of one pure metal [Titanium (CP Ti) and two metal alloys [Gold-Platinum (Au-Pt) and Cobalt-Chrome (Co-Cr)] under 10 N and 50 N seating forces. SBS values were determined and data were analyzed with 3-way ANOVA. Pairwise comparisons and interactions among groups were analyzed with Tukey's simultaneous confidence intervals. RESULTS: Overall mean scores indicated that Co-Cr showed the highest SBS values (1.96±0.4) (P < .00), while Au-Pt showed the lowest among all metals tested (1.57±0.4) (P < .00). Except for PCC/CP Ti, RXU/CP Ti, and GIC/Au-Pt factor level combinations (P < .00), the cements tested under 10 N seating force showed no significantly higher SBS values when compared to the values of those tested under 50 N seating force (P>.05). The PCC cement showed the highest mean SBS score (3.59±0.07) among all cements tested (P < .00), while the resin-based temporary luting cement RXT showed the lowest (0.39±0.07) (P < .00). CONCLUSION: Polycarboxylate cement provides reliable bonding performance to metal surfaces. Resin-based temporary luting cements can be used when retrievability is needed. GIC is not suitable for permanent cementation of fixed dental prostheses consisting of CP Ti or Au-Pt substructures.
Alloys
;
Cementation
;
Dental Prosthesis
;
Metals
;
Polycarboxylate Cement
;
Zinc