1.Treatment of Intracranial Aneurysms with Flow Re-direction Endoluminal Device - A Single Centre Experience with Short-term Follow-up Results.
Neeraj Ramesh MAHBOOBANI ; Wing Ho CHONG ; Samuel Siu Kei LAM ; Jimmy Chi Wai SIU ; Chong Boon TAN ; Yiu Chung WONG
Neurointervention 2017;12(1):11-19
PURPOSE: A flow diverter (FD) is an effective treatment option for intracranial aneurysms. The Flow Re-direction Endoluminal Device (FRED) is a relatively new flow diverter with a unique dual-layer design. We report our experience and short-term results with the FRED. MATERIALS AND METHODS: We did a retrospective review of all consecutive cases in which the FRED was used to treat intracranial aneurysms at a single institution from March 2014 till December 2015. Clinical parameters, aneurysm characteristics, technical results and short-term outcomes were reviewed. RESULTS: Eleven intracranial aneurysms were treated with the FRED in 11 patients. The technical device deployment success rate was 100%. Immediate reduction in intra-aneurysmal flow after deployment was noted in 10 cases. The aneurysm occlusion rate at 6 months was 75%. There was 1 complication of in-stent thrombosis immediately after deployment. There was no side branch occlusion, delayed aneurysm rupture, stroke, or intraparenchymal haemorrhage. There was no neurological deficit, morbidity, or mortality. CONCLUSION: The FRED is a new FD. It has shown to be safe and effective in our series. The unique dual-layer design of the device renders it to have technical advantages over other FDs. The 6-month aneurysm occlusion rate and complication profile of FRED are similar to other FDs.
Aneurysm
;
Follow-Up Studies*
;
Humans
;
Intracranial Aneurysm*
;
Mortality
;
Retrospective Studies
;
Rupture
;
Stents
;
Stroke
;
Thrombosis
2.Machine Learning-Based Computed Tomography-Derived Fractional Flow Reserve Predicts Need for Coronary Revascularisation Prior to Transcatheter Aortic Valve Implantation
Kai Dick David LEUNG ; Pan Pan NG ; Boris Chun Kei CHOW ; Keith Wan Hang CHIU ; Neeraj Ramesh MAHBOOBANI ; Yuet-Wong CHENG ; Eric Chi Yuen WONG ; Alan Ka Chun CHAN ; Augus Shing Fung CHUI ; Michael Kang-Yin LEE ; Jonan Chun Yin LEE
Cardiovascular Imaging Asia 2025;9(1):2-8
Objective:
Patients with severe symptomatic aortic stenosis are assessed for coronary artery disease (CAD) prior to transcatheter aortic valve implantation (TAVI) with treatment implications. Invasive coronary angiography (ICA) is the recommended modality but is associated with peri-procedural complications. Integrating machine learning (ML)-based computed tomography-derived fractional flow reserve (CT-FFR) into existing TAVI-planning CT protocol may aid exclusion of significant CAD and thus avoiding ICA in selected patients.
Materials and Methods:
A single-center, retrospective study was conducted, 41 TAVI candidates with both TAVI-planning CT and ICA performed were analyzed. CT datasets were evaluated by a ML-based CT-FFR software. Beta-blocker and nitroglycerin were not administered in these patients. The primary outcome was to identify significant CAD. The diagnostic performance of CT-FFR was compared against ICA.
Results:
On per-patient level, the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) and diagnostic accuracy were 89%, 94%, 80%, 97% and 93%, respectively. On per-vessel level, the sensitivity, specificity, PPV, NPV and diagnostic accuracy were 75%, 94%, 67%, 96% and 92%, respectively. The area under the receiver operative characteristics curve per individual coronary vessels yielded overall 0.90 (95% confidence interval 85%–95%). ICA may be avoided in up to 80% of patients if CT-FFR results were negative.
Conclusion
ML-based CT-FFR can provide accurate screening capabilities for significant CAD thus avoiding ICA. Its integration to existing TAVI-planning CT is feasible with the potential of improving the safety and efficiency of pre-TAVI CAD assessment.